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Abstract 

This paper tackles a new prototype of dynamic hand gestures and its advantages to apply to controlling 
smart home appliances. The proposed gestures convey cyclical patterns of hand shapes as well as hand 
movements. Thanks to the periodicity of defined gestures, on one hand, common technical issues that 
appear when deploying the application (e.g., spotting gestures from a video stream) are addressed. On the 
other hand, they are supportive features for deploying a robust recognition scheme. To this end, we propose 
a novel hand representation in a temporal-spatial space. Particularly, the phase continuity of the gesture's 
trajectory is taken into account underlying the temporal-spatial space. This scheme obtains very promising 
results with the best accuracy rate is 96%. The proposed techniques are deployed to control home 
appliances such as lamps, fans. These systems have been evaluated in both lab-based environment and 
real exhibitions. In the future, the proposed method will be evaluated in term of the naturalness of end-users 
and/or robustness of the systems. 

Keywords: Human Computer Interaction, Dynamic Hand Gesture Recognition, Spatial-Temporal Features 

 

1. Introduction1 

Home-automation products have been widely 

used in smart homes thanks to recent advances in 

intelligent computing, smart devices, and new 

communication protocols. To maximize user-ability, 

we intend to deploy a human computer interaction 

method, which allows users to use their hand gestures 

to perform conventional operations for controlling 

home appliances. To this end, we propose a new 

prototype of hand gestures and also deploy a real-

time gesture recognition system to control home 

appliance devices such as bulbs/lamps, fans. 

In relevant works, the performance of 

dynamic hand gestures recognition strongly 

depends on the type of dataset used. There were 

many self-defined dynamic hand gestures datasets 

such as [1], [2], [3], [4]. Many other works 

proposed hand gestures datasets that have been 

collected and widely published for different 

purposes: MSRGesture3D dataset for evaluating 

human action recognition [5], [6]; Cambridge 

Gesture dataset for evaluating hand detection [7], 

[8]. In this paper, we consider and tackle cyclical 

hand gestures where hand shapes are cyclical 

patterns and their trajectories (hand movements) 

are in a closed-form. Intuitively, cyclical gestures 

                                           
*Corresponding author:  Tel.: (+84) 97.656.0526 

Email: thanh-hai.tran@mica.edu.vn 

are discriminative styles comparing with common 

ones.  

In the literature, many relevant works in the 

[9], [10], [11], [12] have deployed real practical 

applications using dynamic hand gestures. Such 

system faces many technical issues such as real-

time requirement and complex movement of hands, 

arms, face, and body. In this study, thanks to the 

periodicity of the defined gestures, technical issues 

such as spotting gestures from a video stream 

become more feasible and the phase normalization 

with the whole sequence of frames is more 

tractable. To obtain these, we firstly represent hand 

gesture sequences in a spatial-temporal feature 

space. The hand shapes are exploited through an 

isometric feature mapping algorithm (ISOMAP 

[13]). The dominant trajectories of the hand are 

extracted by connecting key-points tracked using 

KLT (Kanade-Lucas-Tomasi) technique [14]. We 

then deploy an interpolation scheme on each 

dimension to reconstruct the phase-normalized 

image sequence. This interpolation scheme takes 

into account the inter-period phase continuity in 

the conducted space. A support vector machine 

(SVM) classifier [15] is utilized to assign gesture 

label for the interpolated image sequence. We 

evaluate the performance of the proposed 

approaches on different public datasets with 

various scenarios to confirm the robustness of the 

proposed method. The achieved performance is 

very competitive. 
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2. Proposed system 

In this section, we present how the specific 

characteristics of the proposed hand gesture set will 

be utilized for solving the critical issues of an HCI 

application (e.g., in this study, it is a lighting control 

system). Fig. 1 shows the proposed framework. 

There are four main blocks: three first blocks 

compose steps for extracting and spotting a hand 

region from an image sequence; two next blocks 

present our proposed recognition scheme which 

consists of two phases: dynamic hand gesture 

representation and recognition. Once dynamic hand 

gesture is recognized, lighting control is a 

straightforward implementation. 

 

Fig. 1. The proposed framework for the dynamic 

hand gesture recognition. 

 

Fig. 2. In each row, changes of the hand shape during 

a gesture performing. From left-to-right, hand-shapes 

of the completed gesture chance in a cyclical pattern 

(closed-opened-closed). 

2.1. Designing a unique dataset of dynamic hand 

gestures and their characteristics 

To control a device, the user stands in front of 

a Kinect sensor [16] in the valid range from 1.2 to 

4.0 meter. A gesture command is implemented 

through three phases: preparation; performing; 

relaxing. At preparation phase, the user stays 

immobile. At performing phase the user raises 

his/her hand (e.g. right hand) and moves the hand 

according to a predefined trajectory. 

Simultaneously, while moving the hand, the hand 

shape will be changed following three states. There 

changes are underlying a cyclic pattern/closed-form 

in which the hand shape is closed at initial state then 

opened at the middle state, and closed again in the 

state, as shown in Fig. 2. In this study, we design five 

commands which are the most commonly used to 

control home appliances: Turn on/ off; Next; Back; 

Increase; Decrease. Although the number of 

commands is quite limited, there is no limitation to 

design new gestures based on the same concepts. The 

proposed gestures are discriminated from existing 

ones in both characteristics: hand shape and direction 

of hand movement. Hand shapes represent a cyclical 

pattern of a gesture, whereas hand movements 

represent the meaning of a gesture. Before spotting a 

hand gesture, we implemented some pre-processing 

procedures such as depth and RGB calibration (Fig. 

3(b)), human body detection (Fig. 3(c)), hand 

detection using Gaussian Mixture Model (GMM) [17] 

(Fig. 3(d)), skin color pruning for hand region 

segmentation. Details of these techniques were 

presented in our previous work [18]. 

 

Fig. 3. Hand detection and segmentation procedures. 

(a) RGB image; (b) Depth image; (c) Extracted 

human body; (d) Hand candidates. 

 

Fig. 4. Representation of signal 

𝑓(𝑆), 𝑓(𝑣), 𝑎𝑛𝑑 𝑓(𝑥). 

 

Fig. 5. An example of KLT-based trajectory. (a) 

Optical flow extracted from consecutive frames; (b)  
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Fig. 6. The spatial feature extraction ISOMAP-based. 

(a) Residual representation; (b) Three most 

significant dimensions of ISOMAP. 

The estimated trajectory of the gesture, and 

ending times of a hand gesture before recognizing it. 

In this study, we rely on the cyclical pattern of hand 

gestures for gesture spotting implementations that are 

combined between the area convolution of hand 

region as presented in our previous work [26] 𝑓(𝑆)   

and velocity of hand movement 𝑓(𝑣). Which is f(𝑥) 

as the following (1): 

 𝑓(𝑥) = (‖𝑓(𝑆)‖) ∪ (‖𝑓(𝑣)‖)                      (1) 

In Fig. 2, the blue curve illustrates area 

convolution of hand regions, the green curve 

illustrates velocity of hand movement and the pink 

curve is a combination of these signals. The pre-

defined gestures consist of the identical hand shapes 

and hand movements at starting and ending times. 

We then applied method as presented in [26] to 

search two consecutive local minimums values on 

correspond to the closed form of hand shapes from 

the 𝑓(𝑥) signal. Once the starting and ending times of 

a gesture are determined by these local minimums. 

We will annotate them and store in the database for 

further processing. 

2.3. Robust dynamic hand gesture recognition 

Spatial-temporal feature extraction for gesture 

representation: Given a sequence consisting of L 

frames of a spotted gesture, we extract spatial and 

temporal features of every frame then concatenate 

them to build the final representation of the gesture. 

The spatial features are computed through manifold 

learning technique ISOMAP [13] by taking the three 

most representative components of this manifold 

space as shown in Fig.  6. The temporal features are 

two coordinates (x, y) of the average trajectory of the 

hand during gesture implementation. This trajectory 

is computed by averaging all trajectories extracted 

using KLT tracker [19], [14] (Fig. 5(a-b)). Fig. 7 

illustrates a representation in 3-D space of five 

different hand gestures. As shown, the separations of 

five gestures are very discriminative. It expresses 

inter-class variances when the whole dataset is 

projected in the proposed space [20]. 

 

  

 Fig. 7. Distribution of gestures in the low-dimension 

 
Fig. 8. Interpolation of dynamic hand gestures. a) 

Original gesture Decrease (9 frames); c) Original 

gesture Back (30 frames); b, d) corresponding 

interpolated hand gestures (20 frames). 

Phase normalization based on interpolation: By 

utilizing the spatial-temporal space, the comparison 

between two gestures could be straightforward 

implementation by using DTW (Dynamic Time 

Warping) algorithms. However, DTW techniques 

discard inter-period phase. In other words, due to 

locally comparing hand shapes of two gestures (e.g., 

one from a gallery, one is probe gesture), the inter-

period phase is ignored. Thanks to a periodic pattern 

of the image sequence, we deploy an interpolation 

scheme so that hand gesture sequences have the same 

length, and therefore maximize inter-period phase 

continuity. The proposed scheme is based on 

piecewise interpolation and similarity measurement 

between two adjacent points in the proposed spatial-

temporal space. Details of this techniques were 

presented in our previous works [20]. Fig. 8 presents 

some results of the interpolation procedure so that 

length of interpolated sequence is equal to a 

predetermined value M. (For instance, M is set to 20 

frames). The frame numbers of a gesture in Fig. 8 (a)  

equals to 10.  Fig. 8 (c) consists of 28 frames. Fig. 8 

(b), (d) are two interpolated gestures after applying 

the interpolation procedure. In [20], we adjusted M 

and obtain the recognition accuracy rates at M equals 

18 with our datasets. After applying phase 

normalizing scheme, all dynamic hand gestures are 

represented by feature vectors of the same length. 

Gesture recognition is performed using a SVM 
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classifier [15]. The input of this classifier is the 

feature vectors extracted from interpolated sequences. 

 

Fig. 9. Performances of the dynamic gesture spotting 

on two datasets MICA1 and MICA2. 

3. Experimental results 

3.1. Evaluating performance of the gesture spotting 

algorithm  

We evaluate the gesture spotting technique on 

our two datasets MICA1 (16 videos of 16 subjects)  

and MICA2 (33 videos of 33 subjects). These 

datasets are available at http://mica.edu.vn/perso/ 

Doan-Thi-Huong-Giang/MICADynamicHandGesture 

Set/. Each video in these datasets includes fifteen 

pre-defined gestures and some undefined gestures 

performed by one subject. For quantitative 

evaluation, we use Jaccard Index JI [21]. A true 

positive (TP) is detected when JI ≥ θ where θ is a 

pre-defined threshold. Otherwise, it is considered as 

an insertion (False Positive - FP). Fig. 9 illustrates 

quantitative spotting results in term of true positive 

rate and false alarm rate with θ varying from 0.1 to 

0.9 with the area convolution of the area and the 

combination between area signal and velocity of 

hand movement. When θ increases, the true positive 

rate slightly reduces from 0.96 to 0.8 with area 

signal, 0.9 to 0.96 with the combination (on the 

MICA1 dataset) or from 0.95 to 0.82 with area 

signal, 0.86 to 0.97 with the combination (on the 

MICA2 dataset). That shows our algorithm performs 

more effective with this combination of both our 

two datasets. However, the false alarm rate increases 

significantly from 0.21 to 0.76 (on the MICA1 

dataset) or 0.23 to 0.79 (on the MICA2 dataset). We 

propose to choose θ = 0.75 that gives the best trade-

off between the true positive rate and false alarm 

rate for testing the whole system of recognition.  

3.2. Evaluating performances of the representation 

spaces 

We evaluate the gesture spotting technique on 

our datasets with different feature representations 

which are spatial, temporal and the combination of 

them. The evaluation results obtain the accuracy rate 

as shown in Tab. 1. A new representation space is 

the highest recognition result at 96.5%. 

Table 1.  The assessments of end-users on the 

proposed system. 

ISOMAP  KLT ISOMAP+KLT 

59.02 ± 3.16 90.63 ± 0.94 96.5 ± 1.58 

Table 2.  Performance of the proposed method on 

three datasets. 

Dataset Precision (%) Recall (%) 

MSRGesture3D 94.5±3.1 92.03±5.1 

R3DCNN subset 91.0±4.7 87.5±4.2 

MICA3 96.1±3.2 96.9±2.1 

Then, this combination is evaluated on four 

datasets and the results are compared with another 

method [26]. Fig. 10 shows that the proposed method 

is more effective than our previous method [26].  

3.3. Evaluating performances of the recognition 

scheme 

The proposed method is evaluated on three 

different datasets, in which consisting of two 

benchmark datasets: MSRGesture3D [22]; and a 

subset of R3DCNN dataset [23]. In our previous 

work [20], we evaluated on two our datasets which 

obtain the accuracy rate at 97.95±3.09% with 

MICA1 dataset and 94.95±4.65% with MICA2 

dataset. Moreover, these datasets only captured at a 

fix position of end-users. To clearly confirm affects 

of the cyclical movements, we construct the third 

one, named MICA3. MICA3 dataset is constructed 

following setups: volunteers (4 males and 4 females) 

are invited to perform three times five pre-defined 

gestures at 13 positions in a lab-experimental room 

(As shown in Fig. 10, the various positions on the 

floor are marked). Therefore, each position consists 

of 120 dynamic hand gestures. For each dataset, we 

follow leave-p-out-cross-validation method with p 

equals 1. It means that gestures of one subject are 

utilized for testing and the remaining subjects are 

utilized for training. For each evaluation, based on 

the confusion matrix, precision and recall indexes 

are averagely calculated. The evaluation results are 

shown in Tab. 2. Although types of gestures are 

varying from three datasets, the cyclical gestures 

appear often in such datasets. Lowest performances 

are archived with R3DCNN, while highest 

performances are archived with MICA3. Comparing 

with recent works, for MSRGesture3D dataset, the 

sensitivity of state-of-the-art method achieved ups to 

92.45% in [24]. With recall rate of 92.03%, the result 

of the proposed method is obviously comparable. For 

the second dataset, the recall rate achieved far from 

that was reported in [23] (83.6% for depth data). With 

the third dataset, this is more challenging because the 

proposed method is evaluated from various 
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positions/orientations from a subject to Kinect sensor, 

but the highest performances are achieved. 

3.4. Impacts of the proposed  phase normalization 

scheme 

Using MICA3 Dataset, we evaluate the 

performances at different 13 positions with 3 

recognition schemes: DTW-based in [26]; a CNN 

(Convolutional Neuron Networks) features 

combining SVM [27] and the proposed method. 

While DTW aligns locally a pair of hand shape 

alignment, CNN is a must-to-try machine learning 

technique. The proposed method dedicates to 

resolve phase-alignment for cyclical movements. 

The comparison results are shown in Fig. 11. 

Obviously, the proposed method is over-performed 

others at various positions, particularly, the 

proposed method significantly outperforms the 

DTW-based techniques. Main reasons are that it 

ensures the inter-period phase continuity. This 

evaluation also confirmed Its robustness and 

tolerance with changing of subject positions and/or 

different hand directions. 

3.5. Deployment in a practical application of lamp 

controlling 

We have deployed the proposed techniques for 

controlling bulb/lamp. The proposed system is tested  

  
Fig. 10. Comparison results between the proposed 

method vs. other method  

 
Fig. 11. Comparison results between the proposed 

method vs. others at thirteen positions.  

 

Fig. 12. Illustration of a user controlling lamps using 

hand gestures. 

Table 3.  The assessments of end-users on the 

proposed system. 

Survey Lab-

based 

Real exhibition 

(MICA2) 

Lab-based 

(MICA3) 

Subject 16 35 8 

Age 20 to 38 8 to 69 20 to 40 

Male/Female 10/6 27/8 4/4 

User’s Feedback 

Natural 16 35 8 

Memorial 15 35 8 

with a number of end-users in the lab-based 

environment and technical exhibitions (Vietnam 

Techmart 2015). In Fig. 12 shows a demonstration 

of the system in the lab-based environment. In these 

evaluations, besides measuring the system’s 

performance, we also asked end-users to answer 

some questions concerning the naturality and the 

memorability of the designed gesture dataset. The 

main purpose of this survey is to initially hear end 

user's feedback about the proposed system. As 

shown in Tab. 3, the user’s feedback confirmed high 

usability and a promising technology. The 

participants expressed their strong interest in using 

hand gestures to control devices. This shows a big 

potential and feasible techniques to deploy real 

applications. 

4. Conclusion 

This paper described a new type of dynamic 

hand gestures and the robust recognition techniques. 

We focused on utilizing the cyclical pattern 

characteristics of the proposed hand gestures to solve 

critical issues when deploying a real application. 

While hand-shapes form a solution to spot a dynamic 

gesture, both hand-shapes and hand-movement are 

utilized to extract spatial and temporal features to 

deploy the recognition scheme. Particularly, we took 

into account normalizing length of the hand gestures 

via interpolation schemes. The proposed technique 

ensures that the inter-phase continuity of the gestures 
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is maximized. The experimental results confirmed 

that proposed techniques achieved higher 

performances comparing with conventional methods 

on public datasets. Moreover, deploying the proposed 

techniques is for controlling some home appliances 

are demonstrated. Initial evaluations of end-user 

shown a feasible and a natural way of human-

computer interaction to control home appliances. 
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