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How Good Is Kernel Descriptor on Depth
Motion Map for Action Recognition

Thanh-Hai Tran'®™) and Van-Toi Nguyen'2?3
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Hanoi, Vietnam
{thanh-hai.tran,van-toi.nguyen}@mica.edu.vn
2 L3i Laboratory, University of La Rochelle, La Rochelle, France
3 University of Information and Communication Technology Under
Thai Nguyen University, Thai Nguyen, Vietnam

Abstract. This paper presents a new method for action recognition
using depth data. Each depth sequence is represented by depth motion
maps from three projection views (front, side and top) to exploit dif-
ferent aspects of the motion. However, different from state of the art
works extracting local binary pattern or histogram of oriented gradi-
ents, we describe an action based on gradient kernel descriptor. The pro-
posed method is evaluated on two benchmark datasets (MSRAction3D
and MSRGestures3D) and obtains very competitive performances with
the best state of the arts methods. Our best recognition rate is 91.57 %
on MSRAction3D and 100 % on MSRGestures3D dataset whereas [1]
achieved 93.77 % and 94.60 % respectively.

Keywords: Action recognition - Depth motion map - Kernel descriptor

1 Introduction

Action recognition is an active topic in computer vision because of its wide range
of practical applications, more specifically, home abnormal activity, sport activ-
ity, human gestures, human interaction, pedestrian traffic, healthcare, gaming.
Research on human action recognition initially employed video sequences pro-
vided by conventional RGB camera. With the development of new and low-cost
depth sensors such as Microsoft Kinect, new opportunities for action recognition
have emerged.

Kinect sensor provides multi-modal data for processing such as RGB, Depth,
Skeleton. RGB data is strongly affected by illumination changing. Skeleton is
usually computed from a long training on a very large data [2]. Sometimes, the
skeleton is not available or not precise due to the (self-)occusion of the human. As
a result, conventional approaches based on color information could not perform
well. Currently, numerous approaches for action recognition usually exploit the
depth data [3] with different aspects: point cloud, surface normals, etc.

In this paper, we propose a novel method based upon depth motion map and
kernel descriptor. Depth motion map (DMM) is a technique to compress depth

© Springer International Publishing Switzerland 2015
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138 T.-H. Tran and V.-T. Nguyen

sequence into one map representing the motion history of the action. It has been
applied successfully in [4] and [1]. However, instead of extracting histogram of
oriented gradients (HOG) in [4] or local binary pattern (LBP) in [1], we use a
new gradient descriptor based on kernel.

Kernel descriptor has been initially introduced by [5] for general visual recog-
nition problem. Kernel descriptor provides an unified framework to define differ-
ent descriptors such as SIFT, HOG, LBP. Kernel descriptor computed on RGB
images has been shown to be one of the best descriptors for object recognition on
several public datasets. However, original kernel descriptor has some limitations
that is it is not invariant to rotation and scale changes. In addition, it has never
been proved on motion depth data.

In this paper, we improve the original kernel descriptor in [5] to make it
more robust to scaling and rotation. We then study on how the proposed ker-
nel descriptor is good on depth motion maps for action recognition. The pro-
posed method is extensively evaluated with different configurations of machine
learning techniques such as Support Vector Machine (SVM) and Kernel based
Extreme Machine Learning (KEML) on each projection view of the motion map.
The experiments show that our method outperforms state of the art works on
MSRGesture3D dataset until now and obtains comparable results on MSRAc-
tion3D dataset in term of accuracy (Table 3).

2 Related Works

Human action recognition has been mentioned since more than twenty years
ago. There are many methods that have been proposed to aim this goal [6]. In
the section, we are not ambitious to update the survey but we focus on methods
that employ depth data for action representation and recognition.

In [4], the authors proposed to represent the depth sequence by depth motion
map. To make use of the additional body shape and motion information from
depth maps, each depth frame is projected onto three orthogonal Cartesian
planes. Then region of interest (ROI) corresponding to the bounding box of
the human is extracted and normalized to a fixed size to avoid the intra-class
variation. Then HOG feature is computed on the ROI which is the input to a
linear SVM classifier for human action recognition. Experiments have been done
with MSRAction3D dataset. The accuracy is computed with different sub-sets
of data. The method achieves the best result (96.2 %) on the third subset with
cross validation.

Inspired from the idea of Spatio temporal Interest Point (STIP) computed on
RGB sequence, L. Xia and J.K.Aggarwal extended to depth data by extracting
STIPs on each depth map of the sequence (so called DSTIP) [7]. Then they built
a depth cuboid similarity feature (DCSF) to describe the local 3D depth cuboid
around the DSTIPs with an adaptable supporting size. To model an action, Bag
of Word (BoW) model was employed. Each action sequence is represented by a
distribution of code-words computed on all depth maps of the sequence. Finally,
SVM with histogram intersection kernel is applied for classification. This method
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has been tested on two public datasets (MSRAction3D and MSRActivity3D) and
obtained 89.3 % and 88.2 % respectively in term of accuracy with a half data for
training and the rest for testing.

In [8], the authors claimed that the existing features for action representa-
tion are usually based on shape or motion independently. These features fail
to capture the complex joint shape-motion cues at pixel-level. Therefore, in the
paper, the authors consider the depth sequence as a function from R3 (spatial
coordinates, time) to R! (depth) that constitutes a surface in 4D space (time,
depth and spatial coordinates). They then proposed to describe depth sequence
by a histogram capturing the distribution of surface normal orientations in 4D
space (HON4D). Following the author, HON4Ds capture richer information than
3D gradient orientation (HOG3D) [4] therefore the representation is more dis-
criminant. The proposed method has been evaluated on three public datasets
(MSRAction3D, MSRGesture3D, MSRDailyActivity3D). The best recognition
rate on MSRAction3D is 88.89 % while the best on MSRGesture3D is 92.45 %.

In [9], the authors in [4] proposed a new method for human action recogni-
tion which based on the polynormal which is a group of hypersurface normals
in depth sequences. For representing a depth video, firstly, the depth video is
subdivided into a set of spate-time grids. An adaptive spatio-temporal pyramid
is proposed to capture the spatial layout and temporal order in a global way.
Then they concatenate the vector extracted from all the space-time grids as the
final representation of super normal vector (SNV). The method has been tested
on four datasets (MSRAction3D, MSRGesture3D, MSR ActionPairs, MSRDaily-
Activity3D) and shown to ourperform all published works at that time (93.09 %,
94.72 %, 98.89 %, 86.25 % respectively).

Currently, L. Bo et al. have introduced kernel descriptor for visual recognition
problem [5] that shown to be the best descriptor for visual recognition on some
challenging datasets. In this paper, we improved kernel descriptor to be more
robust to scaling and rotation. We would like to investigate how the improved
kernel descriptor is good for action recognition based on depth motion map.

3 Proposed Approach

3.1 General Framework

We propose a framework for action recognition which composes of three main
steps (Fig. 1):

Action
Video DMM Kernel descriptor Action ﬂ’fl

computation computation recognition

Fig. 1. Main steps of action recognition
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— Motion representation: Given a video, we compute depth motion map from
three projection views (front, side, top).

— Action modeling: For each depth motion map, we compute gradient based
kernel descriptor to output the final feature vector.

— Action recognition: The feature vector inputs to a multiclass classifier (SVM,
KEML) to decide the class that the action belongs to. At this step, two fusion
solutions (feature level fusion and classifier level fusions) will be studied.

In the next sections, we will describe in detail each step of the framework.

3.2 Depth Motion Map

Depth Motion Map was firstly introduced in [4]. Given a sequence of N depth
maps D1, Dy, ..., Dy, the depth motion map is defined as follows:

N-1
DMM =Y (ID"™ — D' > ¢) (1)
=1

where € is a threshold to make binary the difference between two consecutive
maps D**! and D’. The binary map of motion energy indicates motion regions
or where movement happens in each temporal interval. So the DMM represents
sum of motions through entire video sequences.

Different from [4], in [1], the authors modified the procedure to obtain DMM.
Specifically, instead of computing the sum on binary maps, [1] take the absolute

difference:
N-1

DMM =) |D'*!' - D' (2)
i=1
In [4], the authors proposed to project depth frames onto three orthogonal
Cartesian planes to characterize the motion of an action. Specifically, each 3D
depth frame is used to generate three 2D projected maps corresponding to front,
side and top views, denoted by Dy, D, D; respectively. By this way, we obtain
three DMMs corresponding to three views.

B_DMM, B_DMM, B_DMM, DMM, DMM DMM,

s t

Fig. 2. Three DMMs computed from front, side, top projection views of depth sequence
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We apply also a bounding box to extract the non-zero region as the fore-
ground in each DMM. Figure 2 shows three DMMs computed following (1) (we
call B_-DMM with B means Binary) and (2) respectively from an action sequence
in MSRAction3D dataset. Obviously, we see that (2) gets richer motion infor-
mation than (1). We have tested both procedures of computing DMM and found
that the binary DMM gives worse performance. Therefore, in the following, we
will use DDM computed according to (2).

3.3 Gradient Based Kernel Descriptor

Kernel descriptor was initially introduced by [5]. This method for object repre-
sentation has been shown to outperform all state of the art descriptors on several
published datasets.

When working with the original kernel descriptor presented in [5], we observe
some problems. Firstly, the gradient based kernel considers the current gradient
vector of a pixel on the patch, it is therefore not invariant to rotation. In addition,
the size of patch is fixed for all images. As consequent, the description is not
invariant to scale change.

We have studied deeply on kernel descriptor and propose two improvements
to make the original kernel descriptor more robust to rotation and scale changes.
The computation of kernel descriptor is presented in Fig.3. It comprises three
main steps:

N\ \ [ \

Generate patches
with adaptive size

Kernel

DMM . descriptor
Compute gradient | —»| | Pyramid structure
vector for each pixel Compute normalized

orientation gradient
kernel descriptor

Pixel-level ‘feature Patch-level feature Image-level feature
o extraction N\ extraction /N extraction %

Fig. 3. Computation of kernel descriptor

— Pixel-level feature extraction: At this level, a normalized gradient vector is
computed for each pixel of the image. The normalized gradient vector at a
pixel z is defined by its magnitude m(z) and normalized orientation w(z) =
6(z) — O(P), where 6(2) is orientation of gradient vector at the pixel z, and
A(P) is the dominant orientation of the patch P that is the vector sum of all
the gradient vectors in the patch. This normalization will make patch-level
features invariant to rotation. In practice, the normalized orientation of a
gradient vector will be w(z) = [sin(w(z)) cos(w(z))]. Note that in the original
kernel descriptor proposed in [5], the gradient orientation was not normalized.
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— Patch-level feature extraction: A set of patches is generated with adaptive
size. The size of the patch is directly proportional to the size of the image.
This adaptive size ensures the number of patches to be considered unchanged.
This adaptive patch makes the patch descriptor more robust to scale change.
Note that in [5], the patch size was fixed for all images. Therefore the number
of generated patches from two images was very different that leads to two
different representations of the same scene observed at different two scales.
Roughly speaking, such representation was not invariant to scale change.
For each patch, we compute a patch feature based on a given definition of
match kernel. The gradient match kernel is constructed from three kernels
that are gradient magnitude kernel kj, orientation kernel k, and position
kernel k.

Kyradient(P,Q) = 3 3 kil 2 hol@(2), 8 Dhyl2.2)  (3)

z€P 2'€Q

where P and @ are patches of two different images that we need to measure
the similarity. z and z’ denote the 2D position of a pixel in the image patch P
and @ respectively. Let ¢,(.) and ¢p(.) the feature maps for the gradient ori-
entation kernel &, and position kernel &, respectively. Then, the approximate
feature over image patch P is constructed as:

Fgradient(P) = Z m(z)¢o(w(2)) @ ¢p(2) (4)

zeP

where ® is the Kronecker product, ¢,(w(z)) and ¢, (2) are approximate feature
maps for the kernel k, and k,, respectively. The approximate feature maps
are computed based on a basic method of kernel descriptor. The basic idea
of representation based on kernel methods is to compute the approximate
explicit feature map for kernel match function [5].

— Image-level feature extraction: At this step, as in [5], a pyramid structure
is used to combine patch features. Given an image, the final representation
is built based on features extracted from lower levels using efficient match
kernels (EMK). First, the feature vector for each cell of the pyramid structure
is computed. The final descriptor is the concatenation of feature vectors of all
cells.

Let C be a cell that has a set of patch-level features X = {z1,...,x,} then the
feature map on this set of vectors is defined as:

3s(X) = 757 3 o) (5)

reX

Where ¢(z) is approximate feature maps for the kernel k(x,y). The feature
vector on the set of patches, ¢g(X), is extracted explicitly.

Given an image, let L be the number of spatial layers to be considered. In
our experiment L = 3. The number of cells in layer [-th is (n;). X (I,t) is set
of patch-level features falling within the spatial cell (,¢) (cell ¢-th in the [-th
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level). A patch is fallen in a cell when its centroid belongs to the cell. The
feature map on the pyramid structure is:

Sp(X) = wMgg (XD 5wl g (XED); s wBgg(xEmy (6)

1

In (6), w® = ZL"_" - is the weight associated with level [.
=1 ng

3.4 Action Classification

Once kernel descriptor is computed, the classification could be simplified by
a linear classifier. In this paper, we use multi-class SVM classifier. However, to
compare the efficiency of the descriptors, we employ also KELM method as in [1].
The input of these classifier is the action descriptor vector that is computed in
the previous steps.

Feature Level Fusion. As we consider three project views of the depth map,
we obtain three depth motion maps corresponding to front, side and top view. A
straightforward solution to combine these information is to concatenate kernel
descriptors computed from three views to make the final representation of the
action sequence.

Decision Level Fusion. The second solution is to build three independent
classifiers for each descriptor and then fuse the result from three classifiers. We
follow the same approach for decision fusion as presented in [1]. More specifically,
the SVM/KEML classifier outputs a value fz(x) which is the distance between a
given feature x and the model. This value is normalized to [0, 1] and the posterior
probability is approximated using sigmoid function according to Platt’s empirical
analysis.

1 ™)
1+ exp(Afr(x) + B)
In our experiment, A = -1, B = 0. This probability is used to estimate a global
membership function:

P(yklz) =

Q
logP(ye|z) =Y aipq(yx|z) (8)
g=1

where () is the number of classifiers and {aq}?zl are uniformly distributed clas-
sifier weights. The final class label yx* is selected as follows:

y* = argmazxP(y|T) (9)

4 Experimental Results

We evaluate the proposed method on two published datasets: MSRAction3D [10]
and MSRGesture3D [11]. Both datasets are built by depth camera.
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4.1 MRSAction3D Dataset

The MSRAction3D dataset includes 20 action types realized by 10 subjects,
each subject performs each action 2 or 3 times. The resolution is 320 x 240.
There are 567 depth map sequences in total. However, as reported in [12], 10
sequences are not used in experiment because the skeletons are either missing or
too erroneous and to be comparible with the current work, we will use only 557
sequences. The actions are: high wave, horizontal wave, hammer, hand catch,
forward punch, high throw, draw x, draw tick, draw circle, hand clap, two hand
wave, side boxing, bend, forward kick, side pick, jogging, tennis swing, tennis
serve, golf swing, and pickup throw.

We follow the experiment setting in [13] in which one half of the subjects
(1, 3,5, 7, 9) are used for training and the remaining are used for testing. This
dataset is challenging because of the number of action classes is large while the
samples for training is not numerous. To normalize the size of DMM, we follow
the setting in [1]. Specifically, the size of DM My, DM Mg, DM M, are 102 x 54,
102 x 75, 75 x b4 respectively.

4.2 MSRGesture3D Dataset

The MSRGesture3D dataset is a dynamic hand gesture dataset that contains
a subset of gestures defined by American Sign Language (ASL). It includes 12
gestures: bathroom, blue, finish, green, hungry, milk, past, pig, store, where, j, 2.
The dataset comprises 333 depth sequences. We follows the same experimental
setting as in [12] that uses leave-one-subject-out cross-validation. The size of
DMM;y, DM M,, DM M, are 118 x 133, 118 x 29, 29 x 133.

4.3 Analysis

Different features, classifiers have been combined to make the comparison. We
label feature level fusion approach as IF'F, decision level fusion as DF'. Tables1
and 2 show the comparative performance of the original kernel descriptor (OKD),
local binary pattern (LBP) and the proposed kernel descriptor (PKD) computed
on three depth motion maps. Globally, we make some conclusions:

Table 1. Comparison of recognition accuracy (%) on MSRAction3D dataset

DepthMap | OKD-SVM [5] | PKD-SVM | PKD-KELM | LPB-KELM [1]

DMM; 79.85 83.15 83.88 78.75
DM M, 71.06 73.62 73.99 68.13
DM M, 67.39 72.16 71.79 64.10
DMMpr |81.68 88.64 89.01 91.94

DMMpr |81.97 88.65 91.57 93.77
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Table 2. Comparison of recognition accuracy (%) on MSRGesture3D dataset

DepthMap | OKD-SVM [5] | PKD-SVM | PKD-KELM | LPB-KELM [1]
DMM;y 96.67 100 100 84.58

DM M, 81.11 85.56 93.33 68.47

DM M; 68.37 70.55 76.66 64.30

DMMprr |96.66 93.34 96.67 93.40
DMMpr |93.33 94.44 90.00 94.60

— The proposed kernel descriptor outperforms the original one in all tests with
each projection view independently. It shows the robustness of out descriptor
w.r.t scaling and rotation.

— The proposed kernel descriptor outperforms LPB features for each projection
view. The use of KELM classification instead of SVM helps to improve lightly
the performance. Once again, we show the efficiency of kernel descriptor on
depth motion map.

— The combination of projection views according to the decision fusion solution
does not improve the performance as in case of LPB descriptor. The reason
for this is this the kernel descriptor gives stable performances for all classes on
each project view. For MSRGesture3D dataset, the feature level fusion obtain
better accuracy than the case of LPB.

Table 3. Recognition accuracy (%) on two datasets

Dataset Best in [8] | Best in [9] | Best in [1] | Our best
MSRAction3D | 88.89 93.09 93.77 91.57
MSRGesture3D | 92.45 94.72 94.60 100

5 Conclusion

In this paper, we have presented a novel method for action recognition. The
method compresses the video sequence into one image using Depth Motion Map
technique then describes the DMM using kernel descriptor. In comparison with
the original kernel descriptor [5], the proposed kernel descriptor is more robust
to scaling and rotation because we have performed a normalization in gradient
orientation as well as selection of adaptive patch size. Using the new descriptor
help to improve significantly the classification rate on each projection view of
the depth map. In the future, we will analyse in more detail how the kernel
descriptor acts on each projection view and propose a new solution to efficiently
fuse these information.
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