

2015 11th IEEE International Conference and Workshops on

Automatic Face and Gesture Recognition (FG)

4-8 May 2015

Ljubljana, Slovenia

Sponsors

IEEE Catalog Number: CFP15074-ART
ISBN: 978-1-4799-6026-2

A New Hand Representation Based on Kernels

for Hand Posture Recognition

Van-Toi NGUYEN1,2,3 Thi-Lan LE1 Thanh-Hai TRAN1 Rémy MULLOT2

Vincent COURBOULAY2

1 International Research Institute MICA, HUST-CNRS/UMI-2954-GRENOBLE INP

and Hanoi University of Science & Technology, Vietnam
2 L3i Laboratory, the University of La Rochelle, France

3 The University of Information and Communication Technology under Thai Nguyen University, Vietnam

Abstract— Hand posture recognition is an extremely active
research topic in Computer Vision and Robotics, with many
applications ranging from automatic sign language recognition
to human-system interaction. Recently, a new descriptor for
object representation based on the kernel method (KDES) has
been proposed. While this descriptor has been shown to be
efficient for hand posture representation, across-the-board use
of KDES for hand posture recognition has some drawbacks.
This paper proposes three improvements to KDES to make it
more robust to scale change, rotation, and differences in the
object structure. First, the gradient vector inside the gradient
kernel is normalized, making gradient KDES invariant to
rotation. Second, patches with adaptive size are created, to make
hand representation more robust to changes in scale. Finally,
for patch-level features pooling, a new pyramid structure is
proposed, which is more suitable for hand structure. These
innovations are tested on three datasets; the results bring out
an increase in recognition rate (as compared to the original
method) from 84.4% to 91.2%.

I. INTRODUCTION

Vision-based hand posture recognition plays an impor-

tant role in natural human-machine interaction. This paper

focuses on the recognition of hand postures, an issue that

is relevant to (i) static recognition, as hand postures can

directly replace some remote control devices, using a one-to-

one correspondence between hand postures and commands;

but also to (ii) dynamic recognition, as a dynamic hand

gesture can be defined as a sequence of hand postures, hence

the usefulness of the identification of key hand postures for

dynamic hand gesture recognition.

Challenges to vision-based hand posture recognition in-

clude the following: (i) as with all other problems in

computer vision, vision-based hand posture recognition is

affected by changes in lighting condition, cluttered back-

grounds, and changes in scale; (ii) additionally, the hand is

a highly deformable object; there is a considerable number

of mutually similar hand postures; (iii) applications using

hand posture generally require real-time, user-independent

recognition. A number of hand recognition methods have

been proposed to address these challenges [1], [2], [3], [4].

These methods can be divided into two main categories

This research is funded by Vietnam National Foundation for Sci-
ence and Technology Development (NAFOSTED) under grant number
FWO.102.2013.08.

depending on whether they are based on an implicit or

explicit representation of the hand.

The methods belonging to the explicit category often

require good hand segmentation results ([5], [6]) to extract

hand components: typically fingers. For example, in [5], the

region of the hand is detected by applying a color segmen-

tation technique on simple uniform background. Then, the

palm morphological characteristics and finger features that

allow identifying the raised fingers are extracted based on the

Self-Growing and Self-Organized Neural Gas network. This

method could not be applicable for real applications because

the segmentation of the hand in a real environment with

cluttered backgrounds is not always good. The approaches

proposed in [7], [8] do not require a good segmentation, but

the computation time is too great for many applications. In

[8], hand postures are matched with predesigned bunch graph

models. Each node in this model contains local features. The

classification task is done by finding the region that has the

best match between bunch graph and target image. The bunch

graph is slid on the image. At each position of the bunch

graph, the position of each node is refined to find the best

one considering the distortions of the nodes.

The methods of the second category are more flexible

since they just require a hand region as input [9], [10], [11].

Hand region is usually defined by a bounding box. In [9],

good results were obtained when applying SIFT features with

BoW (Bag of Words) and SVM (Support Vector Machine)

into hand posture recognition. This method, however, does

not work well when working with low resolution due to the

limited number of detected keypoints.

In [11], it was proposed to apply kernel descriptor method

(KDES) [12] for hand posture recognition. This method

proved effective even in case of low resolution as well as

complex background. Nevertheless, the use of original KDES

still has some limitations. In this paper, we propose a new

hand posture representation based on KDES with following

properties:

• Patch-level features are invariant to rotation: At patch

level, the original KDES computes the gradient based

features without considering the orientation. For this

reason, the generated features are sensitive to rotation.

To remedy this, we propose to compute the dominant

orientation of the patch and normalize all gradient vec-

Hand representation

Patch-level

feature extraction
Hand posture

classification

Multiclass

Support

Vector

Machine

(SVM)

Rectangular

hand regions

Classified

results

Pixel-level

feature extraction

Compute

gradient

vector for

each pixel

Image-level

feature extraction

Design

Hand

Pyramid

Structure

Generate patches

with adaptive size

Compute normalized

orientation gradient

kernel descriptor

Create

final image

descriptor

Fig. 1: The framework of proposed hand postures recognition method.

tors in the patch to this orientation. Patch-level features

will thus be invariant to rotation.

• Robust to scale change: The original KDES computes

features over patches of fixed size. At two scales, the

number of patches to be considered and the correspond-

ing patch descriptions will be different. We propose a

strategy to generate patches with adaptive size. This

makes constant the number of patches and robust patch

description. As a result, image-level feature is invariant

to scale change.

• Suitable to the specific structure of the hand: At image

level, the original KDES organizes a spatial pyramid

structure of patches to build the final description of the

image. However, we observe that the hand is an object

with a specific structure. We then design a new pyramid

structure that better reflects the structure of the hand.

To evaluate the proposed method, we use three datasets

(Triesch dataset [7], NUS II dataset [10]) and [11]). We

perform different experiments in order to demonstrate the

recognition performance, according to each proposed im-

provement, and compare with the state-of-the-art methods.

The remainder of the paper is organized as follows. The

section II introduces the proposed method for hand posture

recognition using the kernel method. Each step of the method

is explained in detail, indicating the main improvement in

each step. The experimental results are presented in the

section III. The conclusions and directions for future work

are given in the section IV.

II. PROPOSED METHOD FOR HAND POSTURE

RECOGNITION

A. General framework of hand posture recognition using the

Kernel method

The proposed framework of hand posture recognition

using kernel is presented in Fig. 1. It comprises two main

steps:

• Hand representation: This step takes a hand region

image (from now on called image, for short) as input

and returns a descriptor of the hand candidate. It is

composed of multiple sub-steps:

– Pixel-level feature extraction: At this level, a gradi-

ent vector is computed for each pixel of the image.

– Patch-level feature extraction: At this level, we

firstly have to generate a set of patches then

compute patch-level features. Different from [12],

depending on image resolution, we create patches

with adaptive size instead of fixed size. This adap-

tive size ensures the number of patches to be

considered unchanged. In addition, it makes the

patch descriptor more robust to scale change. For

each patch, we compute patch features as follows.

Given an image patch, we compute a gradient

descriptor based on the original idea proposed in

[12]. However, unlike [12], we first compute the

dominant orientation of the patch, and then nor-

malize all gradient vectors to this orientation. This

normalization is done inside the gradient kernel

allowing the descriptor to be invariant to rotation.

– Image-level feature extraction: At this step, we

propose a modification w.r.t to [12]: To combine

patch features, we propose a pyramid structure spe-

cific to hand postures instead of a general pyramid

structure. This specific pyramid structure makes the

descriptor more suitable for hand representation.

Given an image, the final representation is built

based on features extracted from lower levels using

efficient match kernels (EMK) proposed in [12].

First, we have to compute the feature vector for

each cell of the hand pyramid structure, and then

concatenate them into a final descriptor.

• Hand posture classification: Once the hand is rep-

resented by a descriptor vector, any classifier could

be applied for the classification task. In this paper

following the strategy originally proposed [12], we will

use Multi-class SVM. In the following sections, we

focus to present in detail the successive steps in hand

representation.

B. Hand representation

1) Extraction of pixel-level features: According to [12],

[11], a number of features can be computed at the pixel

level, such as pixel values, texture, and gradient. In [11], it

was argued that gradient is the best feature for hand posture

recognition; accordingly, in this paper we use the gradient at

pixel level.

(c)(b)(a)

Fig. 2: An example of the uniform patch in the original

KDES and the adaptive patch in our method. (a,b) two

images of the same hand posture with different sizes are

divided using a uniform patch; (b, c): two images of the

same hand posture with different sizes are divided using the

adaptive patch.

The gradient vector at a pixel z is defined by its magnitude

m(z) and orientation θ(z). In [12], the orientation θ̃(z) is

defined as follows:

θ̃(z) = [sin(θ(z)) cos(θ(z))] (1)

2) Extraction of patch-level features:

a) Generate a set of patches with adaptive size from

an image: In the original work [12], the author generated

patches with a fixed size for all images in the dataset even the

dataset contains images with different resolutions. For low-

resolution images, the number of generated patches will be

very limited, producing a poor representation of the image.

Beside, the feature vectors of two images of the same hand

posture at two scales will be highly different. Consequently,

the original KDES is not invariant to scale change.

Fig. 2(a,b) illustrates this problem. Fig. 2(a) and (b) are

two images of the same hand posture at two scales. Fig. 2(a)

has a size of 40 × 56 while Fig. 2(b) is two times bigger

(64×96). When we use a uniform patch of size 16×16 and

uniform grid 8× 8, Fig. 2(b) has 77 patches while Fig. 2(a)

has only 24 patches. A patch of Fig. 2(a) contains more real

area of hand than a patch of Fig. 2 (b). Obviously, the feature

vectors of patches are very different. The above analysis

motivates us to make an adaptive patch size in order to get a

similar number of patches along both horizontal and vertical

axes. Suppose that the given number of patches is npx×npy
(npx patches along the horizontal axis and npy patches along

the vertical axis). The number of grid cells ngridx×ngridy
is defined as: ngridx = npx + 1, ngridy = npy + 1. With

an image has size of w×h, the adaptive grid cell size along

horizontal axis gridsizex = w
ngridx

and the adaptive grid

cell size along vertical axis gridsizey = h
ngridy

. The adap-

tive patch has the size of patchsizex × patchsizey where

patchsizex = 2gridsizex and patchsizey = 2gridsizey. A

patch is constructed from 4 cells of the grid. The overlap of

two adjacent patches along the horizontal or vertical axes is

a region of two cells of the grid. By this way, the size of

the patches is directly proportional to the size of the image.

Fig. 2(b,c) illustrates the advantage of the proposed adaptive

patch and the representation of images based on patch-level

features will be robust to scale change.

b) Compute patch-level feature: Patch-level features

are computed based on the idea of the kernel method.

Derived from a match kernel representing the similarity

of two patches, we can extract the feature vector for the

patch using an approximate patch-level feature map, given a

designed patch level match kernel function.

The gradient match kernel is constructed from three ker-

nels that are gradient magnitude kernel km̃, orientation kernel

ko and position kernel kp. In [12], gradient match kernel is

defined as follows:

Kgradient(P,Q) =
∑

z∈P

∑

z′∈Q

km̃(z, z′)ko(θ̃(z), θ̃(z
′))kp(z, z

′)

(2)

where P and Q are patches of two different images that

we need to measure the similarity. z and z′ denote the 2D

position of a pixel in the image patch P and Q respectively.

θ(z) and θ(z′) are gradient orientations at pixel z and z′ in

the patch P and Q respectively.

Directly using the gradient orientation θ̃(z) in orientation

kernel, the patch level features extracted from the match

kernel will not be invariant to rotation. We then propose

to normalize gradient orientation before applying in match

kernel. Specifically, inspired by the idea of SIFT descriptor

[13], we compute a dominant orientation of the patch and

normalize all gradient vectors to this orientation. We propose

two ways to determine the dominant orientation θ(P) of the

patch P . First, we use the dominant orientation of the patch

as proposed in [13]. Second, we compute a vector sum of

all the gradient vectors in the patch. The normalized gradient

angle of a pixel z in P thus becomes:

ω(z) = θ(z)− θ(P) (3)

Then, according (1), the normalized orientation of a gra-

dient vector will be:

ω̃(z) = [sin(ω(z)) cos(ω(z))] (4)

Finally, we define the gradient match kernel with the

normalized orientation as follows:

Kgradient(P,Q) =
∑

z∈P

∑

z′∈Q

km̃(z, z′)ko(ω̃(z), ω̃(z
′))kp(z, z

′)

(5)

The gradient magnitude kernel km̃ is defined as:

km̃(z, z′) = m̃(z)m̃(z′) where m̃(z) = m(z)√∑
z∈P m(z)2+ǫg

,

ǫg is a small constant, m(z) is the gradient magnitude at a

pixel z.

Both the orientation kernel ko and the position kernel kp
are Gaussian kernels k(x, x′) = exp(−γ‖x − x′‖2). The

factor γ is defined individually for ko and kp that are denoted

by γo and γp respectively.

Now, given the definition of match kernel, how to extract

feature vector for a patch. Let ϕo(.) and ϕp(.) the feature

maps for the gradient orientation kernel ko and position

kernel kp respectively. Then, the approximate feature over

image patch P is constructed as:

F gradient(P) =
∑

z∈P

m̃(z)φo(ω̃(z))⊗ φp(z) (6)

where ⊗ is the Kronecker product, φo(ω̃(z)) and φp(z)
are approximate feature maps for the kernel ko and kp,

respectively.

The approximate feature maps are computed based on

a basis method of kernel descriptor. The basic idea of

representation based on kernel methods is to compute the

approximate explicit feature map for kernel match function.

In other word, the kernel match functions are approximated

based on explicit feature maps. This enables efficient learning

methods for linear kernels to be applied to the non-linear

kernel. This approach was introduced in [14], [15], [16], [12].

One of the methods for approximating explicit features

has been presented in [16]. In the following, we review this

method briefly. Given a match kernel function k(x, y), the

feature map ϕ(.) for the kernel k(x, y) is a function mapping

a vector x into a feature space so as:

k(x, y) = ϕ(x)⊤ϕ(y) (7)

Suppose that we have a set of basis vectors B = {ϕ(vi)}Di=1,

the approximation of feature map ϕ(x) can be:

φ(x) = GkB(x) (8)

where G is defined by: G⊤G = K−1
BB where KBB is D×D

matrix with {KBB}ij = k(vi, vj). kB is a D×1 vector with

{kB}i = k(x, vi).
To extract approximate features φo(ω̃(z)), φp(z) from

match kernels, compact basis vectors need to be generated

by learning. The compact basis vectors are learned from

sufficient basis vectors using kernel principal component

analysis. Where, the sufficient basis vectors are sampled

uniformly and densely from support region using a fine grid

so as these basis vectors make an accurate approximation

to match kernels. We use the shared set of basis vectors

and match kernel parameters from [12] that were learned

using a subset of ImageNet. Let the learned set of do basis

vectors is Bo = {ϕo(x1), ϕo(x2), ..., ϕo(xdo
)} and the set

of dp basis vectors is Bp = {ϕp(y1), ϕp(y2), ..., ϕp(ydp
)}

considering ko and kp kernels respectively. Where xi are

sampled normalized gradient vectors and yi are normalized

2D position of pixels in an image patch.

The Kronecker product causes high dimension of the

feature vector F gradient(P). To reduce the dimension of

F gradient, the kernel principal component analysis is applied

into the joint basis vectors {ϕo(xi)⊗ ϕp(yj)}i=1..do,j=1..dp
.

Let t-th component αt
ij is learned through kernel principal

component analysis, following [12], the resulting gradient

kernel descriptor for match kernel in (5) has the form:

F̃ t
gradient(P) =

do∑

i=1

dp∑

j=1

αt
ij

∑

z∈P

m̃(z)ko(ω̃(z), xi)kp(z, yj)

(9)

A B C D

EOF

e1

e2

e3

(a) (b)

Fig. 3: (a) General spatial pyramid structure used in [16]. (b)

The proposed hand pyramid structure.

3) Extraction of image-level features : Once patch-level

features are computed for each patch, the remaining work

is computing a feature vector representing the whole image.

In [16], the authors proposed a spatial pyramid structure by

dividing the image into cells using horizontal and vertical

lines at several layers (Fig.3(a)). This structure is general

without taking the specific shape of objects into account. In

our work, as the hand is an object with a specific structure,

we propose a new pyramid structure specifically for the hand.

In the following, we present in detail each step to build the

final descriptor of the image.

a) Design a hand specific pyramid structure for patch-

level features pooling: Fig. 3.b shows the proposed hand

pyramid structure. The main idea is to exploit characteristics

of hand postures. Let the hand posture image have a size of

w × h. We remark that the regions at images corners often

do not contain hands. For this reason, we only consider the

area inside the inscribed ellipse of the hand image rectangle

bounding box (e3). The lines along the fingers converge at

the lowest center point of the palm, near the wrist (O). Based

on the structure of the hand, the ellipses (e1, e2, e3) and the

lines (OA,OB,OC,OD) are used to divide the hand region

into parts that contain different components of the hand such

as palm and fingers where AB = BC = CD. The detail

of designed structure is described as: O is the midpoint of

FE(OF = OE). The ellipse e1 is the inscribed ellipse of

the rectangle that has a size of (12w × 1
2h). The line FE

is a tangent line of the ellipse e1. The contact between the

line FE and the ellipse e1 is O. The ellipses are upright. In

the similarity, the ellipsis e2 is the inscribed ellipsis of the

rectangle that has size of (34w× 3
4h). In a layer, we define a

cell as being a full region limited by these ellipses and lines.

In our work, the hand pyramid structure has 3 layers, (see

Fig.4(b)).

• Layer 1: This layer contains only one cell defined by

the biggest inscribed ellipse e3.

• Layer 2: In [12], this layer has four rectangular cells.

Unlike this, we create eight cells: three cells created

from 3 ellipses and five cells created from the intersec-

tion of four lines with the biggest ellipse.

Fig. 4: Construction of image-level feature concatenating

feature vectors of cells in layers of hand pyramid structure.

• Layer 3: This layer has 15 cells generated from the

intersection between lines and three ellipses.

b) Create the final descriptor of the whole image:

Let C be a cell that has a set of patch-level features X =
{x1, ..., xp} then the feature map on this set of vectors is

defined as:

φS(X) =
1

|X |
∑

x∈X

φ(x) (10)

Where φ(x) is approximate feature maps (8) for the kernel

k(x, y) with the set of basis vector that is generated by

constrained singular value decomposition method (CKSVD)

[16]. The feature vector on the set of patches, φS(X), is

extracted explicitly.

Given an image, let L be the number of spatial layers to

be considered. In our case L = 3. The number of cells in

layer l-th is (nl). X(l, t) is set of patch-level features falling

within the spatial cell (l, t) (cell t-th in the l-th level). A

patch is fallen in a cell when its centroid belongs to the cell.

The feature map on the hand pyramid structure is:

φP (X) = [w(1)φS(X
(1,1)); ...;w(l)φS(X

(l,t));

...;w(L)φS(X
(L,nL))]

(11)

In (11), w(l) =
1
nl∑

L
l=1

1
nl

is the weight associated with level l.

Fig. 4 shows image-level feature extraction on the proposed

hand pyramid structure. Until now, we obtain the final

representation of the whole image, which we call image-level

feature vector. This vector will be the input of a Multiclass

SVM for training and testing.

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of our hand represen-

tation method, we use three available hand posture datasets

[10], [7], [11]. Tab. I gives information on these datasets

after pre-processing. In these datasets, hand posture images

are captured in complex natural backgrounds.

We perform two experiments. The first experiment aims

at comparing the performance of our method with the state

of the art methods. The objective of the second experiment

is to analyze the effect of our three improvements.

TABLE I: Three datasets used in our experiments

Name of dataset
hand

postures

training

images

#testing

images

image

resolution

Nguyen et al. [11] 21 4636 4690 (25 ÷ 138) × (37 ÷ 135)

NUS II [10] 10 200 1000 (27 ÷ 97) × (57 ÷ 110)

Jochen Triesch [7] 10 60 660 (31 ÷ 108) × (42 ÷ 113)

In the first experiment, among different approaches pro-

posed for hand posture recognition, we choose two methods

presented in [11] and in [9] because they are closely related

to our work and proved robust for hand posture recognition.

TABLE II: Average accuracy (%) obtained for three datasets

with manual hand segmentation

Dataset Method [9] Method [11] Our method

Nguyen et al. [11] 34.5 84.4 91.2

NUS II [10] 43.2 95.3 97.1

Jochen Triesch [7] 60.8 95.7 96.7

TABLE III: Average accuracy obtained (%) for the dataset

[11] with automatic hand segmentation

Method in [9] Method in [11] Our method

Accuracy (%) 20.6 74.0 80.0

Tab. II shows obtained accuracy of three methods on three

datasets with perfect hand detection while Tab. III illustrates

the accuracy of the three methods for the dataset [11] with

automatic hand detection. For automatic hand detection, we

apply the hand detection method proposed in [17] to detect

internal center region of the hand then simply expand in order

to obtain whole hand region. We keep only the true detections

(based on the condition of the PASCAL VOC challenge that

is based on Jaccard index) and discard the false detections

since we focus on evaluating the hand posture recognition

method. We select randomly from the automatic detection

results on dataset [11] 100 examples per posture for testing

and 100 examples per posture for training. We can observe

that our method outperforms the two state of the art methods

on all datasets for both manual and automatic hand detection.

The recognition accuracy with automatic hand detection is,

of course, lower than with manual detection, but remains

relatively good (80%). This suggests that we can combine

our recognition method with the hand detection method in

order to build a complete human-robot interaction using hand

postures. However, the performance of the method depends

on the characteristics of the data to which it is applied.

With the dataset [11], since this dataset contains images

of the same hand postures in different scales, our method

has proved its robustness. Our method gets 7% better than

the original method based on kernel descriptor. For the two

others datasets, the improvement in recognition accuracy is

smaller. The method presented in [9] shows limitations when

applied to these datasets, due to the small number of detected

key points. Tab. IV shows the main diagonal of the confusion

matrix obtained from the method in [11] and our method with

the same dataset [11]. Our method improves the recognition

TABLE IV: Main diagonal of the confusion matrix (%) with the method in [11] and our method for 21 hand posture classes

in the dataset [11]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Method [11] 100 69.4 91.2 95.6 73.2 90.4 66.1 45.2 74.3 84.1 83.4 100 95.8 93.6 98.6 100 91.6 92.2 70.1 93.1 67.2

Our method 100 71.1 99.6 93.0 80.8 96.1 83.3 74.2 82.9 92.7 92.6 100 100 100 100 100 94.7 99.0 77.7 92.6 86.9

TABLE V: Main diagonal of the confusion matrix (%) obtained with our method for 21 hand posture classes in the dataset

[11] for three testing cases

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Method [11] 100 69.4 91.2 95.6 73.2 90.4 66.1 45.2 74.3 84.1 83.4 100 95.8 93.6 98.6 100 91.6 92.2 70.1 93.1 67.2

Case 1 100 81.0 95.1 93.4 82.1 90.0 76.6 73.7 82.4 86.8 88.2 100 100 97.9 100 100 94.7 97.1 81.7 93.5 90.0

Case 2 100 75.9 99.1 93.4 78.1 100 84.9 76.5 79.7 81.4 91.3 100 100 100 100 100 93.8 100 75.0 92.6 90.0

Case 3 100 71.1 99.6 93.0 80.8 96.1 83.3 74.2 82.9 92.7 92.6 100 100 100 100 100 94.7 99.0 77.7 92.6 86.9

accuracy for almost all hand posture classes (19 over 21).

Especially, for class #7 and #8, the recognition accuracy

increases 30% after applying our improvement.

In the second experiment, in order to obtain a detailed

analysis of the behavior of our three improvements, we

perform different comparisons on the dataset of [11]. As

described in section II.B, our method has three improve-

ments: adaptive patch, normalized gradient orientation, and

hand pyramid structure. We observe the performance of the

method in the following cases: Case 1: Apply only adaptive

patch; Case 2 Combine both the adaptive patch and hand

pyramid structure; Case 3: Combine all improvements.

Based on the obtained result shown in Tab. VI, we can

see that the adaptive patch improvement makes a great

difference. The performance increases 6% after applying the

adaptive patch instead of the uniform patch in the original

method. With this dataset, the hand pyramid structure and

normalized gradient orientation have a minor contribution.

Tab. V provides the recognition accuracy obtained for 21

hand posture classes in three testing cases. From this result,

one time again, the adaptive patch improvement shows that

it has an important impact on the recognition accuracy. This

improvement makes the recognition accuracies of 15 over

21 classes increases. The spatial hand posture is relatively

sensitive. Its robustness depends on the characteristics of the

hand posture.

TABLE VI: Effects of our improvements in three cases: Case

1: Apply only adaptive patch; Case 2: Combine both the

adaptive patch and hand pyramid structure; Case 3: Combine

all improvements

Method [11] Case 1 Case 2 Case 3

Accuracy (%) 84.4 90.6 91.0 91.2

Concerning computation time, our method takes averagely

0.3s per image when working with 50 × 100 image using

Matlab 8 (R2013a), Window 64-bit Operating System with

processor Intel(R) Core(TM) i5-2520M.

IV. CONCLUSIONS AND FUTURE WORKS

We presented in this paper a new representation of hand

posture using kernel methods. This representation is invariant

to rotation, robust to scale change and suitable for specific

hand structures. The experiment results show that the adap-

tive patch brought a significant improvement in recognition

accuracy (from 84.4% to 90.6%). Rotation invariance and

hand structure suitability properties increased the perfor-

mance slightly (from 90.6% to 91.2%). The reason was that

three datasets are not enough appropriate to demonstrate

these properties. In the future, we will evaluate our method

with a more challenging dataset (images with rotation and

changes in scale) such as the one used in [6]. We also plan to

apply the proposed method to human-robot interaction using

hand gestures. The principles underlying our method could

also be extended to other types of objects.

REFERENCES

[1] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition
for human computer interaction: a survey,” AIR, Nov. 2012.

[2] M. M. Hasan and P. K. Mishra, “Hand Gesture Modeling and
Recognition using Geometric Features : A Review,” CJIPCV, vol. 3,
no. 1, 2012.

[3] V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation
of hand gestures for human-computer interaction: a review,” TPAMI,
vol. 19, no. 7, pp. 677–695, Jul. 1997.

[4] A. Chaudhary, J. L. Raheja, K. Das, and S. Raheja, “Intelligent
Approaches to interact with Machines using Hand Gesture Recognition
in Natural way: A Survey,” IJCSES, vol. 2, no. 1, pp. 122–133, Feb.
2011.

[5] E. Stergiopoulou and N. Papamarkos, “Hand gesture recognition using
a neural network shape fitting technique,” EAAI, vol. 22, no. 8, pp.
1141–1158, 2009.

[6] K. Hu and L. Yin, “Multi-scale topological features for hand posture
representation and analysis,” in ICCV. IEEE, 2013, pp. 1928–1935.

[7] J. Triesch and C. Von Der Malsburg, “Robust classification of hand
postures against complex backgrounds,” in FG, 1996, pp. 170 – 175.

[8] Y.-T. Li and J. P. Wachs, “HEGM: A hierarchical elastic graph
matching for hand gesture recognition,” PR, no. 765, 2014.

[9] N. H. Dardas and N. D. Georganas, “Real-Time Hand Gesture De-
tection and Recognition Using Bag-of-Features and Support Vector
Machine Techniques,” TIM, vol. 60, no. 11, pp. 3592–3607, Nov. 2011.

[10] P. K. Pisharady, P. Vadakkepat, and A. P. Loh, “Attention Based
Detection and Recognition of Hand Postures Against Complex Back-
grounds,” IJCV, Aug. 2012.

[11] V.-T. Nguyen, T.-L. Le, T.-H. Tran, R. Mullot, and V. Courboulay,
“Hand posture recognition using kernel descriptor,” Procedia Com-

puter Science, vol. 39, no. 0, pp. 154 – 157, 2014, iHCI.
[12] L. Bo, X. Ren, and D. Fox, “Kernel descriptors for visual recognition,”

in NIPS, 2010, pp. 244–252.
[13] D. G. Lowe, “Object recognition from local scale-invariant features,”

in ICCV, vol. 2, 1999, pp. 1150–1157 vol.2.
[14] S. Maji, A. C. Berg, and J. Malik, “Efficient classification for additive

kernel svms,” TPAMI, vol. 35, no. 1, pp. 66–77, 2013.
[15] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit

feature maps.” TPAMI, vol. 34, no. 3, pp. 480–492, Mar. 2012.
[16] L. Bo and C. Sminchisescu, “Efficient match kernel between sets of

features for visual recognition,” in NIPS, 2009, pp. 135–143.
[17] V.-t. Nguyen, T.-l. Le, T.-t.-h. Tran, R. Mullot, and V. Courboulay, “A

method for hand detection based on Internal Haar-like features and
Cascaded AdaBoost Classifier,” in ICCE, 2012, pp. 608–613.

	07163074
	Bia
	Main Program
	NguyenVanToi_FG2015 Camera-ready

