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Abstract

In this paper, we propose to investigate the role of a new descriptor named Kernel Descriptor (KDES), recently introduced in 1 for
hand posture recognition. As the hand posture has it own the color characteristic, we will examine kernel descriptor in diffident
color channels such as HSV, RGB, Lab to find out the most suitable color space for kernel representation of hand posture. We
perform extensive experiments on two datasets. The obtained results are promising (97.3% on NUS-2 dataset and 85.0% on our
dataset). Thank to the analysis, kernel descriptor is highly recommended for hand posture recognition.
c© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of IHCI 2014.

Keywords: hand posture recognition, human-robot interaction, kernel descriptor

1. Introduction

Visual interaction provides a natural and effective means for human-system interaction in comparison with different
modalities such as audio, tactile. Face and hand are two main parts of the body that are widely used in human-
system interaction. While face and facial expression information gives the information about the identity and the
emotion/attitude of the person, hand is usually used to provide more information about what people want (commands)
in interaction with the system. Hand gesture recognition is a challenging research topic due to the large diversity of
hand postures/gestures produced by different people. We distinguish hand posture and hand gesture. A hand posture
is the pose of the hand at an instant while a hand gesture is a sequence of hand postures in a duration of time. This
means that hand gesture has dynamic aspect.

In our work, we focus on hand posture recognition because in most of human robot interaction applications, hand
posture is enough to explain or command something to the robot. Concerning hand posture recognition, the most
crucial part is hand posture representation. This part aims at extracting relevant features/descriptors for hand pos-
ture. Current hand posture representation methods can be divided into two main categories: implicit and explicit
approaches. The works belonging to explicit approach2 try to locate different hand components such as finger tip and
formulate the hand pose based on these components while the second approach3,4 applies generic visual descriptors

∗ Corresponding author. Tel.: +84-91-284-7077 ; fax: +84-4-3868-3551.
E-mail address: van-toi.nguyen@mica.edu.vn

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Scientific Committee of IHCI 2014
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Fig. 1. Our proposed framework for hand posture recognition

such as shape context, color in order to represent in implicit way the hand pose. Recently, Bo et al. 1 has proposed a
new descriptor named Kernel descriptor (KDES) for object recognition. This descriptor has been proved to be very
robust for several applications. Hence, we propose to apply this descriptor for hand posture recognition.

Our main contributions are following: i) Firstly, kernel descriptor has been evaluated on general object recognition,
for the first time, we propose to employ this descriptor for hand posture representation and show how good it is for
hand posture recognition; ii) Secondly, as the hand posture has it own the color characteristic, which is different from
other objects in the scene, we investigate kernel descriptor in diffident color channels such as HSV, RGB, Lab to
find out which color space is the most suitable for kernel representation of hand posture; iii) Finally, we perform an
extensive experiments to evaluate the performance of our proposed framework for hand posture recognition using
kernel descriptor with two datasets, one is benchmark and one we build ourself to do the comparison.

2. The framework of hand posture recognition

We propose a framework for hand posture recognition based on kernel descriptor as follows. It composes of four
main steps (see Fig.1). (1) The step Hand detection aims at detecting and localizing hand regions on the image. In
our framework, we can apply any hand detection methods. However, in order to make our analysis independent of
hand detection results, in the experiment section, we will evaluate the robustness of the hand posture recognition
method with perfect hand detection that is done manually. (2) The step Low-level feature extraction on hand region
takes a hand region as input image, then computes some low-level features such as color conversion, gradient com-
putation, local binary pattern feature extraction, that will be used to build hand-level descriptor. (3) In the step Hand
representation, we propose to describe hand posture based on kernel descriptor. We will do an extensive analysis on
combinations of different kernel descriptors (gradient, color, texture) on different color channels (HSV, Lab, RGB).
(4) In the step Hand posture recognition, the typical multiclass SVM will be used for hand posture classification.
Since the most important step of our framework is hand representation step, in the next section, we will describe it.

3. Hand representation

In this paper, we investigate how kernel descriptor is good for hand posture recognition when it is extracted based
on three low level image features that are pixel value, gradient and texture feature on three common color spaces that
are RGB, HSV and Lab. We firstly present the definition of the similarity between two image patches beyond match
kernel. We then describe how to extract kernel descriptor for each image patch from match kernel.

3.1. Match kernels

We present here an example that is the gradient match kernel. The pixel value match kernel and texture match
kernel are formulated in the similar way1. The gradient match kernel is constructed from three kernels that are the
gradient magnitude kernel km̃, the orientation kernel ko, and the position kernel kp.

Kgradient(P,Q) =
∑
z∈P

∑
z′∈Q

km̃(z, z′)ko(̃θ(z), θ̃(z′))kp(z, z′) (1)
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Fig. 2. Our dataset: Right part: List of upright postures of right hand in our dataset. Left part:Some examples of high inter-class similarity and low
intra-class similarity characteristics of our dataset: (a), (b) and (c) are three different hand postures with similar appearance, (d)-(l) images of the
same posture under different conditions

where P and Q are patches of two different images we need to measure the similarity. z and z′ denote the 2D position
of a pixel in the image patch P and Q respectively. The gradient magnitude kernel km̃ is defined as the inner product
of two normalized gradient magnitude vectors km̃(z) and km̃(z′): km̃(z, z′) = km̃(z)km̃(z′). This inner product is a positive
definite kernel. The normalized gradient magnitude m̃(z) is defined as following: m̃(z) = m(z)√∑

z∈P m(z)2+εg
, where εg is a

small constant. m(z) is magnitude of the image gradient at a pixel z. In Eq.1, the normalized gradient vectors θ̃(z) is
defined as following: θ̃(z) = (sin(θ(z)), cos(θ(z))), where θ(z) is orientation of the image gradient at a pixel z. Both the
orientation kernel ko and the position kernel kp are Gaussian kernels which is of the form: k(x, x′) = exp(−γ‖x− x′‖2).
The factor γ will be defined individually for ko and kp that are denoted by γo and γp respectively.

3.2. Extracting kernel descriptors

To extract the compact low dimensional features from match kernels, compact basis vectors need to be gener-
ated by learning. With gradient kernel descriptor(Gradient-KDES), let we have a learned set of do basis vectors
{φo(x1), φo(x2), ..., φo(xdo )} and a set of dp basis vectors {φp(y1), φp(y2), ..., φp(ydp)} considering ko and kp kernels re-
spectively. Where xi are sampled normalized gradient vectors and yi are normalized 2D position of pixels in an
image patch. Let we have also αt

i j is learned through kernel principal component analysis. Where αt
i j are co-

efficients of the t − th kernel principal component. Then, the gradient kernel descriptor (Eq.1) has the form1:
F

t
grad(P) =

∑do
i=1

∑dp

j=1 α
t
i j{
∑

z∈P m̃(z)ko(̃θ(z), xi)kp(z, y j)}. The pixel value kernel descriptor (PixelValue-KDES) and
the texture kernel descriptor (Texture-KDES) are extracted in a similar way. The combination of the three kernel
descriptors (Combination-KDES) is constructed by concatenating the image-level feature vectors. The image-level
feature is extracted using efficient match kernels (EMK) that is introduced in5. The compact basis vectors then are
learned on a general set of images. The learned compact basis vectors, the optimized dimensionality of KPCA and
match kernel parameters then be fixed to use in other datasets. We use the set of basis vectors and match kernel
parameters that were learned using a subset of ImageNet1.

4. Experiments

The aim of these experiments are to evaluate the performance of kernel descriptor for hand posture recognition step
as well as to investigate in order to find out the color space that is the most suitable for hand representation. To do
this, we use two datasets: one benchmark dataset4 and one dataset with more number of hand postures that we build
ourself.

The first dataset is the NUS II dataset introduced in 4. The second dataset is our dataset collected in the context of
human-robot interaction in indoor environment containing cluttered background. This robot stays immobile during
interaction with the users. User will stand in front of robot. The distance from robot to user is around 1m to 3m. Based
on our study, we define a set of 21 hand postures of up-right hand using in human-robot interaction that is shown in
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Texture-KDES 0. 927 0.886 0 .903 0.783 0.576 0.688

Combination-KDES 0. 961 0.946 0 .973 0.850 0.741 0.823

Fig. 3. (a): The obtained accuracies of our method with two datasets. (b,c) Confusion matrix in the best cases: (b) on NUS II dataset, (c) on our
dataset.

the right part of Fig.2. In all postures, the hand points up except the posture #4. The total number of videos in our
dataset is 21 × 10 persons × 4 times = 840. Each video has a length of about 4 seconds, a frame rate of 30 fps, and a
resolution of 320 × 240 pixels. The dataset is divided into two parts for training and testing. For each video, every 10
frames we select one sole frame. Our dataset has several challenges for hand detection and hand recognition that are
(1) large number of hand postures; (2) high inter-class similarity and low intra-class similarity due to the acquisition
condition. The left part of Fig.2 illustrates some challenging examples of our dataset.

We use accuracy to measure the performance of the proposed method. The accuracy is defined by the ratio between
the number of correct recognition and the number of test. The average accuracy obtained with two datasets on different
descriptors and different color spaces are given in Fig.3(a) while the detail results for each class are illustrated in
Fig.3(b,c). This figure shows that our method obtains good results for both datasets. The average accuracy on NUS II
dataset is about 10% higher than on our dataset. The reason for this results is that our dataset is more challenging.

The gradient kernel descriptor and texture kernel descriptor obtains the best result on RGB color space while the
pixel value kernel descriptor obtains the best result on Lab color space. In over all, the gradient kernel descriptor is
often better than the two others. The combination kernel descriptor is lightly better than the best individual descriptor.
However, the recognition time of the combination is about three times more expensive than the individual descriptor
because the feature extraction time plays an important role in recognition time.

5. Conclusion and future works

In this paper, we have presented a new method that uses kernel descriptor for hand posture recognition. Based on
the obtained results, we can see that KDES is prospective descriptor for hand representation of real application. In
this case, other descriptors such as shape context can not be employed because it requires a good segmentation while
KDES needs only a bounding box of hand region. However, while working with KDES, we have two observations.
Firstly, KDES is not invariant to the size of image of object. Secondly, since KDES is computed in both object region
and background, the performance of the system depends on the background. These drawbacks should be taken into
account in the future work.
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