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Abstract— This paper describes and extensively evaluates a 

visual-based system that autonomously operators for both 
building a map and localization tasks. The proposed system is to 
assist mapping services to the visually impaired/blind people in 
small or mid-scale environments such as inside a building or 
campus of school, hospital. Toward this end, the proposed 
approaches solely rely on visual data thanks to a self-designed 
image acquisition system. On one hand, a robust visual odometry 
method is utilized to create a map of the environments. On the 
other hand, the proposed approaches utilize FAB-MAP algorithm 
that is maybe the most successful for learning places in the 
environments. Map building and learning places in an 
environment are processed in an off-line phase. Through a 
matching place procedure, online captured images are 
continuously positioned on the map. Furthermore, we utilize a 
Kalman Filter that combines the matching results of current 
observation and the estimation of robot states based on its 
kinematic model. We evaluate performances of the proposed 
system through experimental schemes. The results show that the 
constructed map coincides with ground truth, and matching 
image-to-map is high confidence.  The evaluations also contain 
scenarios which the blind pupils move following Robot. The 
experimental results confirmed that proposed system feasibly 
navigating blind pupils in indoor environments.  

Keywords— Visual Odometry, Place Recognition, FAB-MAP 
algorithms, Navigations. 

I. INTRODUCTION 

Autonomous localization and navigation are extreme 
desirable services of peoples who suffer from visual impairment 
problems. Most of commercial solutions are based on the Global 
Positioning System (GPS), Wi-Fi, LIDAR, or fusion of them. 
However, GPS systems provide the services with stick 
conditions such as good weather, outdoor environments, no 
presence of buildings. It is highly cost to setup LIDAR systems 
in environments where mid-scale areas like campus of school, 
hospital are. Wi-Fi systems are also not easily installing to cover 
such environments. They thus are not widely accepted by the 
users [4]. Recent techniques in the computer vision community 
and high performances of the smart-phones nowadays offer 
substantial advantages to address these problems. Consequently, 
it promises alternative solutions to support the mapping services 
to the visually impaired or blind people. Our previous works 
[17] suggests a framework presenting such kind of system that 
is solely utilizing visual sensor data. Particularly, we toward the 
new technologies to assist the visually impaired/blind people in 
small/mid-scale environments. In this paper, we extent 
framework presented in [17] with two aspects: Firstly, we warp 

the framework into a mobile robot in order to deploy navigation 
services assisting blind people, who move following the robot. 
Secondly, we implement extensive evaluations to confirm 
feasibilities of the proposed system. 

 The proposed framework in [17] involves in vision-based 
methods for understanding and representing environments. It 
aims to answer two questions. The first question is that "what 
does the world look like?”. This question involves in the map 
building task. In contrast to this, localization service relates to 
estimating a pose to a relative position on the created map. In 
other words, it is to answer the second question "Where am I?”. 
The first question is solved through a learning step which 
supports us building a map as well as assigning scenes into 
corresponding positions on it. The major advantage is that it is 
possible to build incremental map. The second question is a 
process to match image-to-map. To solve these questions, we 
simultaneously collect visual data for the off-line process by a 
self-designed imaging acquisition system. For building a map of 
the environment, we utilize a robust visual odometry proposed 
in [15]. This is interesting method because it is successful to 
build trajectory using only one consumer-grade camera. 
Furthermore, in order to improve quality of the constructed map, 
we adapt the algorithms in [15] with contexts of the indoor 
environments. In order to learn places in the environment, we 
utilize so-called loop closure detections method [3], [13]. The 
main idea for learning the visited places is that loop constraints 
can be found by evaluating visual similarity between the current 
observation and past images where are captured in one (or 
several) trials. The second phase is an online process. An agent 
(such as vehicle, human) is required to mount/wear a mobile 
device camera. The current observation is matched to the place 
in the database which is learnt in the off-line phase. This 
matching procedure is similar to place recognition. Recent 
approaches like FAB-MAP are aimed at reaching a high recall 
rate at 100% precision. In this work, we employ a robust FAB-
MAP [3] that is reliable to recognize known places through 
autonomous operation in an intelligent system like a mobile 
robot. FAB-Map 2.0 has been applied to a 1000 km dataset and 
achieved a recall of 3.1% at 100% precision (14.3% at 90% 
precision respectively).  

The next sessions of the paper are organized as follows: In 
Section 2, we briefly survey related works. In Section 3, we 
present summarize the system navigational aids visually 
impaired people using vision-based for Robot. In section 4, we 
focus on evaluating the performance of the proposed system: in 
term of: Localization based on matching image, accuracy of 
identifying the starting point;  How to control navigation 
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services on Robot using Kalman fiter. Finally, we conclude and 
give some ideas for future works. 

II. RELATED WORKS 

Developing localization and navigation assistance tools for 
visually impaired people have been received many intention in 
the autonomous robotics community [4]. Most of them involve 
in finding out efficient solutions to the positioning data that 
come from different sensory modalities such as GPS, laser, 
Radio Frequency IDentification (RFID), vision or the fusion of 
several of them. Loomis et al. in [11] surveyed efficiency of 
GPS-based navigation systems supporting visually impaired 
people. The GPS-based systems share similar problems: low 
accuracy in urban-environments (localization accuracy is 
limited to approximately 20 m), signal loss due to multi-path 
effect or line-of-sight restrictions due to the presence of 
buildings or even foliage. Kulyukin et al. [9] proposed a system 
based on Radio Frequency IDentification (RFID) for aiding the 
navigation of visually impaired people in indoor environments. 
The system requires the design of a dense network of location 
identifiers. Helal et al. [8] proposed a wireless pedestrian 
navigation system. They integrated several signals such as 
voice, wireless networks, Geographic Information System (GIS) 
and GPS to provide the visually impaired people an optimized 
route. Recent advanced techniques in computer vision offer 
substantial solutions with respect to localization and navigation 
services in a known or unknown environments. The vision based 
approaches are safe navigation and provide a very rich and 
valuable perception information of the environment. 
Alcantarilla [6] utilizes well-known techniques such as 
Simultaneous Localization and Mapping (SLAM) and Structure 
from Motion (SfM) to create 3-D Map of an indoor environment. 
He then utilizes means of visual descriptors (such as Gauge 
Speeded Up Robust Features, G-SURF) to mark local 
coordinate on the constructed 3-D map. Instead of building a 
prior 3-D map, Lui et al. [10] utilize a pre-captured reference 
sequence of the environment. Given a new query sequence, their 
system desires to find the corresponding set of indices in the 
reference video.  

Many specific applications that also are based on vision 
sensors are developed to support typical daily activities of the 
visually impaired people. For example, [2] develops an 
application, names LocateIt, which supports blind people locate 
objects in the indoor environments. In [16], ShelfScanner is a 
real-time grocery detection, that allows online detection of items 
on a shopping list. With regard to map building and localization 
services, SLAM has been proven to be quite successful in 
navigation for autonomous robotic systems [1]. By means of 
visual SLAM techniques, some wearable applications are 
proposed. Pradeep et al. [14] presents a head-mounted, stereo-
vision for detecting obstacles in the path and warn subjects about 
their presence. They incorporate visual odometry and feature 
based metric-topological SLAM. Murali et al. in [12] estimate 
the users location relative to the crosswalks in the current traffic 
intersection. They develop a vision-based smart-phone system 

for providing guidance to blind and visually impaired travelers 
at traffic intersections. The system of Murali et al. in [12] 
requires supplemental images from Google Map services, 
therefore it is suitable with travels at outdoor environments only. 
With SLAM-based approaches, it is possible to build a map at 
the same time the location of the people who wears cameras 
standing/moving in the environment. However, the complexity 
of the map building task varies in function of environment size. 
In some case, a map can be acquired from visual sensor, but in 
other cases, the map is such that it must be constructed from 
other sensor modalities such as GPS, WIFI [3]. Furthermore, 
matching a current view to a position on the created map seems 
to be the hardest problem in many works [1], [7]. In our point of 
view, an incremental map is able to support us improving 
matching results. Therefore, different from these systems, we 
create a rich map as good as possible through many trials. When 
new observations arrive, these new observations must be locally 
and globally consistent with the previous construction. These 
problems are able to solve through the loop closure algorithms 
[3], [13]. However, major different points from [3] are that our 
proposed system build solely using visual data for both map and 
localization services, whereas the works in [3] use GPS data for 
localizing on the map. With our proposed system, creating a 
travelling route and learnt scenes are implemented in advance. 
The blind people/visually impaired people then use a frontal 
camera of a smart-phone device to capture current view for 
matching image-to-map. Therefore, it is not able to update the 
map that is major function in the SLAM systems. 

III. SUMMARY OF THE PROPOSED SYSTEM 

This section briefly describes a frame-work to build 
navigation system in indoor environments. Different from 
conventional navigation system, the proposed system utilizes 
solely visual data, without requires conventional positioning 
data such as GPS, WI-FI, LIDAR, so on. Details of the proposed 
system are described in [17]. In major improvement in this paper 
is that, we warp the proposed frame work in [17] into a mobile 
robot, where Kalman filter is an important factor to improve 
accuracy of robot movements. 

The proposed frame work is presented in Fig. 1. According 
to this framework, its operation consists of two phases: 

• Offline learning phase: Using the collected visual data, 
this phase creates trajectories and learns the places 
along the travels. Because scenes and route images are 
captured concurrently, the constructed map contains 
learnt places in corresponding positions of the travel. 

• Online localization phase: The current view is 
described using a visual dictionary. A probabilistic 
function attempts to match this data to the database of 
labeled places obtained during the offline phase. The 
current observation can then be matched to a 
corresponding position on the constructed map. 
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Fig. 1. The framework of the proposed system 

The framework utilizes the visual data collected by a self-
designed image acquisitions system, as shown in Fig. 2.  

 
Fig. 2. (a) A schematic view of the visual data collection scheme. (b) The 
proposed imaging acquisition system in which a mobile phone camera is 
attached on rear of a hand-hold camera. (c) The image acquisition system 
attached on a wheel vehicle. 

A. The map building based on visual odometry techniques 

To build route of the travel, we utilize a visual odometry 
method proposed by Van Hamme et al. [8]. The method is based 
on the tracking of ground plane features. Particularly, it is 
designed to take into account the uncertainty on the vehicle 
motion as well as uncertainty on the extracted features. Well-
known issues for visual odometry techniques are that they need 
to estimate precisely correspondences between the features of 
consecutive frames. Once the feature correspondences have 
been established, we can reconstruct the trajectory of the vehicle 

between the two frames. Due to the floor characteristic of the 
corridor environment, the number of feature points detected by 
the original work [15] is quite limited and leads to a very poor 
reconstruction of the travel. To solve this issue, we manually 
placed additional markers over the whole journey. 

B. Visual description of the scene 

Visual description of the indoor environments are suffered 
from repetitive structure and ambiguous scenes. In order to 
discriminate scenes as well as to find only representative scenes, 
we filter out similar scenes from collection data. To obtain this, 
we utilize GIST features [18] and a conventional classifier (e.g., 
K-nearest neighbor) to extract only representative scenes. 

These visual presentations need to be easy implementation 
and efficient distinguishing scenes. To adapt with these issues, 
we involve the FAB-MAP algorithms [3] which are recently 
successful for matching places in routes over long period time. 
The FAB-MAP is a probabilistic appearance-based approach to 
place recognition. Each time the image taken, its visual 
descriptors are detected and extracted. In our system, we utilize 
SURF extractors and descriptors for creating on a visual 
vocabulary dictionary. A Chow Liu tree is used to approximate 
the probability distribution over these visual words and the 
correlations between them. The FAB-MAP involves co-occur 
visual word of same subject in the worlds.  

C. Matching image-to-map procedure 

Given a current view, its position on the map is identified 
through a place recognition procedure. We evaluate the current 
observation at location Li on the map by its probability when 
given all observations up to a location k: 
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Where Zk contains visual words appearing in all observations 
up to k-1; and Zk presents visual words at current location k. 
These visual words are defined in the learning places phase. A 
probability p(Zk|Li) infers observation likelihood as learnt in the 
training data. In our system, a Li is matched at a place k� when 
argmax(p(Zk|Li)) is large enough (through a pre-determined 
threshold T = 0.9).  

D. The Kalman Filter (KF) 

Utilizing Kalman Filter is an extension from our original 
framework in [17]. In the context of assistance service to blind 
people using mobile robot, Kalman Filter help to combines the 
matching results of current observation and the estimation of 
robot states based on its kinematic model. The observations of 
the robot are images captured over time, which are then 
converted to coordinates (x, y, z) in a predefined coordinate 
system using above matching procedure. However, in indoor 
environment, the scene does not always change significantly. 
Consecutive scenes could repeat when the robot moves. 
Therefore, the performance of image matching is not good. 
Sometimes, a current observation could be matched with a very 
far forward / backward image that makes incorrect localization 
of the robot. To overcome this problem, we propose to use a 
Kalman filter to correct the position of the robot from 
observation. Effectiveness of using Kalman filter is presented in 
the experimental results.  

IV. EXPERIMENTAL RESULTS 

A. Evaluation environments 

We evaluate the proposed method in a corridor environment 
of a building, where is 10th floor of International Research 
Institute MICA-Hanoi University of Science and Technology 
(HUST) (Fig. 3).  

 
Fig. 3. A 3-D map of the evaluation environment 

In this section, we report performance of three experiments, 
which affect to quality of the navigation services. They are: (1). 
Performance of the image matching-to-map. This evaluation 
reports localization accuracy of the proposed method. (2). 

Performance of the identifying the starting point. This evaluation 
impacts to navigating blind people services. In scheme of the 
navigating services, knowing the starting point and ending point, 
the direction and how to travel are able to predicted (e.g. by 
shortest path algorithms). Whereas, the ending point is given by 
user’s request, the starting point should be automatically 
identified by system. (3). Effectiveness of using Kalman filter in 
controlling robot. This evaluation is to confirm that proposed 
system is feasible to face practical issues in movements of robot. 

B. Experimental results 

1) Evaluate image matching-to-map procedure 
We collect data in 4 times (each time equals to one trial). To 

build the visual dictionary in offline phase, we have used images 
collected from L#1 trial. By experience, we set the size of the 
dictionary to 1300. We then use the images collected from L#4 
trial to learn places along the travel. In total, K = 140 places have 
been learnt. The visual dictionary and descriptors of these places 
are stored in XML files. The collected images in L#2 and L#3 
travels are utilized for the evaluations.   

TABLE I.  RESULT OF THE MATCHING PLACES  
(FAB-MAP ALGORITHMS) WITHOUT AND WITH SCENE DISCRIMINATIONS 

Travels Without scene 
discrimination 

With scene 
discrimination 

Precision Recall Precision Recall 

L#2 12% 90% 67% 82% 

L#3 36% 85% 74% 88 % 

The TABLE I. shows the precision and recall with L#2 and 
L#3 travels with/without scene discrimination step. For learning 
places (using original FAB-MAP, without scene 
discrimination), the recall of L#3 travel is clearly higher than 
L#2. The main reason is that some “new” places which were not 
learnt from L#4 are able to update after L#2 running. Therefore, 
more “found” places are ensured with L#3 travel. TABLE I. also 
shows the efficiency of the scene discriminations step, the 
performances of image-to-map matching obviously increasing 
and stable for precisions measurement with scene discrimination 
step, whereas high confidence of the recalls is still consistent. 

2) Evaluate the localization of starting point  
As mentioned previously, we will use a robot to help blind 

person navigating in the environment from any position on the 
map to a predefined destination point. To this aim, we have to 
localize the robot at the current time. In this section, we will 
examine if the proposed localization method is good enough to 
identify starting position of the robot.  

Following round-trip along the corridor of total length about 
60 m, every 3 m, we take a point and consider it as the starting 
point of the robot.  This procedure is repeated at 3 different times 
(Testing # 3- morning, Testing # 2-  afternoon, Testing #1- 
evening).  For each testing time, the total number of sampled 
point is 46. To identify the position, we take 100 consecutive 
images then apply the image matching as presented in section 
III.C. We determine the most repeatable matched location when 
its reputation is large enough (larger than 70% in our 
experiment). The robot is then considered as being localized at 
that position.  
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Fig. 4. The performance of localization of starting point of Robot. (a) 
Evaluation chart prediction starting point. (b) The starting point in the 
environment. 

The Fig. 4 shows the performances with 3 trials in term of 
recall. The best result among 3 trials is 83%. These results show 
that environment conditions have a relatively big impact to the 
experimental results. They also suggest us for further 
improvement so that the proposed algorithms are solid to the 
lighting conditions 

3) Evaluate the role of Kalman filter  
Given the starting point of the robot and the destination 

point, based on the environment information, we could 
determine the shortest path to follow. However, when we make 
the robot moves, dues to the mechanical errors, the robot cannot 
not attend exactly the positions provided by drive/control 
module. The Fig. 5 shows the real positions of the robot that 
drifts away the ground truth ones.   

 
Fig. 5. Comparision of real positions of the robot to the groundtruth ones 

Because of these reasons, the robot cannot reach the desired 
position. We propose to correct the drift with the use of image 

matching based localization in combination with Kalman filter 
(see section III.D). We conducted four experiments in each the 
robot moves follows a straight road of length 30 m at velocity 
about 200 mm / second in the morning. To show the 
effectiveness of Kalman filter, Fig. 6 demonstrates navigation 
data without and with using Kalman filter.  

 
Fig. 6. Vehicle moving without/with Kalman Filter. Top row: Left panel: 
vehicle positios on the map using only results of the matching image-to-map 
procedures. The arrows show directions to guide vehicle. Numbers on left of 
each red box show placeID of the current observation. Right panel: positions of 
the vehicle are updated using Kalman filter. Bottom row: Left panel: This result 
shows wrong direction to vehicle.  Right panel: is a good matching with Kalman 
filter. 

Using only the place recognition results, the directions 
supporting navigation services are obviously uncontrolled. 
Some matching places (show in numbers) are misses and in the 
wrong order in this case. The main reason is the erroneous 
matching of some places (e.g., place ID = 11, shown in bottom 
panel). By using a Kalman Filter, directions supporting 
navigation services are correctly ordered. 

To evaluate the localization accuracy in case of use / nonuse 
of Kalman filter, we measure median and average error of 
estimated position with respect to the ground truth one. The 
evaluation results are presented in the table below: 

TABLE II.  MEDIAN ERROR (IN METER) 

Method L#1 L#2 L#3 L#4 Average 

Vision based localization with 
Kalman filter 

0.6 0.4 0.8 1.3 0.8 

Only use the shortest path 0.6 0.8 0.9 1.1 0.9 

TABLE III.  AVERAGE ERROR (IN METER) 

Step 
L#1 L#2 L#3 L#4 Average 

avg std avg std avg std Avg std avg std 

Matching 0.6 0.4 0.6 0.6 1.0 1.0 1.3 0.7 0.9 0.7 

NoMatching 0.6 0.5 0.7 0.4 1.6 2.0 2.3 3.2 1.4 1.6 

The best accuracy is obtained with the 2nd trial (Δ ~ 0.4 meter).  
We investigate in more detail the deviation at each position on 
the trajectory.  Matching and NoMatching (L#2, L#3) as shown 
Fig. 7. 
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Fig. 7. Compare the results of locate error between Matching and NoMatching  

Consequently, if we do not utilize the Kalman Filter and 
imaging matching, the error rate is Δ ~ 1.2 m high Delta; 
whereas, by using Kalman filter, the localization error rate 
significantly reduce to Δ ~ 0.4. 

4) Nagivational aids to visually impaired people in Small 
Pervasive Environments using robot 

To show the feasibility of using robot to help blind people 
navigating in environment, we have asked a blind pupil to follow 
the robot. The human robot interaction is carried out though the 
mobile phone.  

 
Fig. 8. A blind pupil move following Robot. The places on his travel are 
marked on the constructed map in red-rectangles 

According to guidance by vibration sensor mobile 
smartphone, he could go whole travel in the corridor 
environment. We obtain average performances of the Matching 
~88% recall, Localization ~ 66 % Recall, Locate error  Δ < 0.4 
meters. These results are not so far from as shown Fig. 8.  In 
other words, we could match precisely positions the blind people 
using the constructed map. These results are feasible to deploy 
automatic navigating system. 

V. CONCLUSIONS 

In this paper, we presented a vision-based system for both 
autonomously map building and localizing services. We 
successfully created the map of the indoor environment using the 
visual odometry and learning places. The results of matching 
image-to-map are high confidence. Therefore, the proposed 
system is able to provide us deploying navigating services in the 

indoor environments. The proposed system directs to support 
visually impaired peoples in Small Pervasive Environments. 
Further in-the-loop evaluations with the visually impaired/blind 
people will direct us to future work. 
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