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a b s t r a c t 

Estimating parameters of a geometrical model from 3-D point cloud data is an important problem in 

computer vision. Random sample consensus (RANSAC) and its variations have been proposed for the es- 

timation of the models parameters. However, RANSAC is computationally expensive and the problem is 

challenging when the measured 3-D data contain noise and outliers. This paper presents an efficient sam- 

pling technique for RANSAC, in which geometrical constraints are utilized for selecting good samples for 

a robust estimation. The constraints are based on two predefined criteria. First, the samples must ensure 

being consistent with the estimated model; second, the selected samples must satisfy explicit geometri- 

cal constraints of the interested objects. The proposed approach is wrapped as a robust estimator, named 

GCSAC (Geometrical Constraint SAmple Consensus), for estimating a cylindrical object from a 3-D point 

cloud. Extensive experiments on various data sets show that our method outperforms other robust esti- 

mators (e.g. MLESAC) tested in term of both precision of the estimated model and computational time. 

The implementations and evaluation datasets used in this paper are made publicly available. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

m  

g  

b  

m  

f  

u  

o

 

i  

s  

b  

o  

i  

i  

t  

t  

t  

o  

e  

t  

s  
1. Introduction 

Estimating parameters of a primitive geographic shape such as

plane, sphere, cylinder, cone, from 3-D point cloud data is a funda-

mental research topic in the fields of computer vision and robotics.

The geometrical model of an interested object can be estimated

using from two to seven geometrical parameters [17] . A Random

Sample Consensus (RANSAC) [6] and its paradigm attempt to ex-

tract as good as possible shape parameters which are objected ei-

ther heavy noise in the data or processing time constraints. For

being more accurate, faster and more robust, the RANSAC fam-

ily focuses on either a better hypothesis from random samples or

higher accuracy of data satisfying the estimated model. In this pa-

per, we propose to exploit geometrical constraints to obtain a qual-

ified minimal sample set (MSS), i.e, good samples. This sample set

can be used to generate better hypotheses, and as a result an es-

timated model is achievable. This study also demonstrates a real

case where the proposed method is deployed for fitting cylindrical

objects. 

Originally, a RANSAC paradigm randomly draws 3-D points from

an input data set without any prior assumption on the data. The-

oretically, RANSAC must run a relatively large number of itera-
∗ Corresponding author. 

E-mail address: van-hung.le@mica.edu.vn (V.-H. Le). 
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ions to find an optimal solution before a stopping criterion is

et. Chum et al. (in [3] ) argued that “not all all-inlier samples are

ood”. They proposed the LO-RANSAC algorithm which is inspired

y an idea that using an uncontaminated minimal sample is al-

ost sufficiently or near perfect agreement with theoretical per-

ormance. Therefore, the most crucial question is how to select the

ncontaminated or so-called qualified or good samples from a set

f data points. 

Motivated by this argument, we attempt to search for the qual-

fied samples that could be better selected when geometrical con-

traints of the interested object(s) are used within a RANSAC-

ased algorithm. In particular, at each hypothesis in a framework

f a RANSAC-based algorithm, a searching process aimed at find-

ng good samples based on the constraints of an estimated model

s implemented. To perform searches for good samples, we define

wo criteria: (1) The selected samples must ensure being consis-

ent with the estimated model via a roughly inlier ratio evalua-

ion; (2) The samples must satisfy explicit geometrical constraints

f the interested objects (e.g., cylindrical constraints). The strat-

gy of the proposed method first samples a minimal sample set

hat achieves a given inlier ratio among the samples and then adds

amples that meet geometrical constraints derived from the prim-

tive in concern. The seed generation is iterated until the conver-

ence criterion is satisfied. In the other words, the key idea is guid-

ng minimal sample set search using normal constraints of the geo-

etric models (e.g., cylindrical objects). The constraints come from

https://doi.org/10.1016/j.patrec.2017.12.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.12.012&domain=pdf
mailto:van-hung.le@mica.edu.vn
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eometrical properties of a cylindrical model. We tackle that at

ach iteration, thanks to the good samples, thus, an optimal model

with the maximal inlier ratio) is highly expected. Consequently,

he number of iterations can be adaptively updated according to

he certain inlier rate, results in an earlier termination. The pro-

osed method is different from LO-RANSAC because only minimal

ample set is utilized for the model estimation. It is also separated

rom the USAC (A Universal Framework for Random Sample Con-

ensus) [15] , where the sample check stage and/or model check are

mplemented after each random sampling procedure. Our search

or good samples is actively burned at the start of each iteration. To

valuate a hypothesis, we utilize the maximum likelihood as MLE-

AC algorithm [18] . For a termination condition, we adopt adaptive

ANSAC [8] in which the number of iterations is adjusted when-

ver a better model is generated. Finally, the effectiveness of the

roposed method is confirmed by a real case of fitting results of

ylindrical objects in several datasets. The proposed algorithm ob-

ains good performances in term of both precision of the estimated

odel and the processing time even on data with a low inlier ra-

io. 

The main contributions of the paper are: (1) A new technique

sing geometrical constraints to search for good samples within

 RANSAC-based algorithm. The proposed technique allows one to

ncrease the quality of the sampled points and therefore the esti-

ated model; (2) A demonstration of success of applying the pro-

osed technique for a robust estimator for estimating a cylindrical

bject from a point cloud data. The implementations of the pro-

osed method, method for evaluation and the collected data sets

re made publicly available. 

. Related work 

For a general introduction and performances of RANSAC fam-

ly, readers can refer to good surveys in [2,16] . In the context of

his research, we briefly survey related works which are catego-

ized into two topics. 

The first topic is efficient schemes on the selection of minimal

ubset of samples for RANSAC-based robust estimators, because

he original RANSAC is very general with a straightforward im-

lementation, it always requires considerable computational time.

any RANSAC variants have been proposed with further optimiza-

ion for a minimal sample set (MSS) selection. Progressive Sample

onsensus or PROSAC [3] orders quality of samples through a sim-

larity function of two corresponding points in the context of find-

ng good matching features between a pair of images. LO-RANSAC

4] and its fixed version LO 

+ -RANSAC [13] add local optimization

teps within RANSAC to improve accuracy. To speed up the compu-

ation, adaptive RANSAC [8] probes the data via the consensus sets

n order to adaptively determine the number of selected samples.

he algorithm is immediately terminated when a smaller num-

er of iterations has been obtained. With the proposed method,

he good samples are expected to generate the best model as fast

s possible. Therefore, the termination condition of the adaptive

ANSAC [8] should be explored. Recently, USAC [15] introduces a

ew frame-work for a robust estimator. In the USAC frame-work,

ome strategies such as the sample check (Stage 1b) or the model

heck (Stage 2b), before and after model estimation, respectively,

re similar to our ideas in this work. However, USAC does not re-

lly deploy an estimator for primitive shape(s) from a point cloud.

 recent work [10] proposes to use geometric verification within

 RANSAC frame-work. The authors deployed several check pro-

edures such as sample relative configuration check based on the

pipolar geometry. Rather than the “check” procedures, our strate-

ies anticipate achieving the best model as soon as possible. There-

ore, the number of iterations is significantly reduced thanks to the

esults of the search for good sample process. 
For the second topic is cylindrical object estimation (or more

eneral, fitting primitive shapes) from 3-D point clouds, readers

an refer to a survey on feature-based techniques [1] . Some fit-

ing techniques, for instance, multiscale super-quadric fitting in

5] , Hough transform in [14] , are commonly used. However, the

obust estimators (e.g., RANSAC family [2] ) are always preferred

echniques. Original RANSAC [6] demonstrates itself robust per-

ormances in estimating cylinders from range data. In [19] , nor-

al vectors and curvature information are used for parameters’

stimation and extraction of cylinders. The cylindrical objects are

lso interested in the analytic geometrical techniques. The authors

n [7] formulate a cylinder using three parameters such as ra-

ius r , height h , and the axis the cylinder γ . [17] defines a cylin-

er through two samples and their normal vectors. The height of

he cylinder normally is calculated in an additional step, e.g., de-

ermined by the maximal distance between two projected points

n [7] . In this study, geometrical analysis of a cylinder in [17] is

dopted for defining criteria of the qualified samples as well as for

stimating parameters of the interested model from a 3-D point

loud. 

. Algorithms 

.1. General proposed frame-work 

To estimate parameters of a 3D primitive shape, an original

ANSAC paradigm, as shown in the top panel of Fig. 1 , selects ran-

omly an MSS from a point cloud and then model parameters are

stimated and validated. The algorithm is often computationally

nfeasible and it is unnecessary to try every possible sample. Our

roposed method (GCSAC - in the bottom panel of Fig. 1 ) is based

n an original version of RANSAC, however it is different in three

ajor aspects: (1) At each iteration, the minimal sample set is con-

ucted when the random sampling procedure is performed, so that

robing the consensus data is easily achievable. In other words, a

ow pre-defined inlier threshold can be deployed as a weak con-

ition of the consistency. Then after only (few) random sampling

terations, the candidates of good samples could be achieved. (2)

he minimal sample sets consist of qualified samples which en-

ure geometrical constraints of the interested object. (3) Termina-

ion condition of the adaptive RANSAC algorithm [8] is adopted so

hat the algorithm terminates as soon as the minimal sample set

s found for which the number of iterations of current estimation

s less than that which has already been achieved. 

For evaluating and updating the best estimated model, differ-

nt from an original RANSAC-based algorithm whose inlier ratio is

he criteria for updating the best model, GCSAC adopts the Neg-

tive Log-Likelihood criteria of MLESAC algorithm [18] . The best

stimated model is chosen when the minimum value of the log-

ikelihood (denoted as −L ) is found. At each iteration, −L is calcu-

ated by: 

L = −log 

(
γr 

(
1 √ 

2 πσ

)n 

exp 
(

− e 2 

2 σ 2 

)
+ 

(
1 − γr 

)
1 

v 

)
(1)

here σ is the standard deviation of the error; v is the parameter

pace which outliers are expected to fall in; γ r is the mixing pa-

ameter that is estimated based on Expectation Maximization (EM)

rom a set of indicator variables ηi with (i = 1 , 2 , . . . , N) . 

To determine the termination criterion for the estimation algo-

ithm, a well-known calculation for determining a number of sam-

le selection K is: 

 = 

log(1 − p) 

log(1 − w 

s ) 
(2) 

here p is the probability to find a model describing the data, s is

he minimal number of samples needed to estimate a model, w is

ercentage of inliers in the point cloud. 
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Fig. 1. Overviews of the proposed method (GCSAC) and the conventional RANSACs and a fitting scheme. Top panel: The original RANSAC/MLESAC paradigms; Bottom panel: 

Our proposed method, GCSAC. 
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At each iteration, a sample point is specified as an inlier whose

distance to the estimated model is smaller than a threshold T .

In real datasets, this distance threshold T is usually chosen em-

pirically. As explained in [8] , when distribution of the data is a

Gaussian with zero mean and standard deviation δ, the thresh-

old distance T can be estimated by T 2 = 5 . 99 δ2 for a probability

of α = 0 . 95 that the sample is an inlier (in case of the number of

minimal sample set = 2). 

While p is often set to a fixed value (e.g., p = 0 . 99 as a conser-

vative probability), K therefore depends on w and s . At each iter-

ation k , if the estimated model is better (more accurate), then all

of the w can be estimated more confidently. As result of using the

good samples, the proposed method obviously tends to estimate an

optimal model at each iteration, instead of randomly finding out

the best one as the original RANSAC. Therefore, at each iteration

k, w is confidently estimated and K is updated by Eq. (2) . It may

occur an immediate termination when at a certain iteration, w de-

termines a K , which is smaller than that already been performed. 

3.2. Fitting 3-D cylindrical objects 

For geometrical analyzing a cylinder object, we utilize the

method proposed by [17] . A cylinder is determined by four param-

eters: A center point on the cylinder axis, denoted as I ( x 0 , y 0 , z 0 );

A vector of the main direction, denoted as γ c ; Radius R a of the

cylinder; Height of the cylinder, set to 1 by default. 

The geometrical relationships of above parameters are shown

in Fig. 2 (a). A cylinder can be estimated from two points ( p 1 , p 2 )

(two blue-squared points) and their corresponding normal vectors

( n 1 , n 2 ) (marked by green and yellow line). 

The normal vectors are computed using techniques proposed in

[9] . At each point p i , k-nearest neighbors kn of p i are determined

within a radius r . The computation of the vector of p i is therefore

reduced to the analysis of eigenvectors and eigenvalues of the co-

variance matrix C created from the kn of p i , as given by: 

 = 

1 

kn 

kn ∑ 

i =1 

( p i − p a v )( p i − p a v ) 
T , C v j = λ j v j , j ∈ { 0 , 1 , 2 }; (3)

where p a v = 

1 
kn 

∑ kn 
i =1 p i represents the 3-D centroid of the nearest

neighbors. λj is the j th eigenvalue of the covariance matrix, and V j 

is the j th eigenvector found by Eq. (3) . 
Let γ c be the main axis of the cylinder (red line) which is esti-

ated by: 

c = n 1 × n 2 (4)

o specify a centroid point I , we project the two parametric lines

 1 = p 1 + t n 1 and L 2 = p 2 + t n 2 onto a plane specified by PlaneY

see Fig. 2 (b)). The normal vector of this plane is estimated by a

ross product of γ c and n 1 vectors ( γc × n 1 ). The centroid point I is

he intersection of L 1 and L 2 (see Fig. 2 (c)). The radius R a is set by

he distance between I and p 1 in PlaneY . A result of the estimated

ylinder from a point cloud is illustrated in Fig. 2 (f). The height of

he estimated cylinder is normalized to 1. 

.3. Cylindrical object fitting using geometrical constraints for quality 

f samples 

The proposed frame-work is deployed for fitting a cylindrical

bject from a point cloud data. The corresponding normal vectors

re already prepared in advance. The fitting procedure as shown in

ig. 3 consists of the corresponding steps of the proposed frame-

ork. The algorithm starts by roughly selecting initial good sam-

les. We adopt the idea of adaptive RANSAC [8] to probe initial

amples. At each iteration, we assume that the worst case estimate

f w t determines an initial sample. In the worse case (let’s assume

 t = 0 . 1 ), a consensus set containing more than 10% of the data

s found, that is at least the proportion of inliers. The initial inlier

atio w t is set to 0.1 (or 10% inlier rate) is to easily find out a can-

idate of the estimated model. If a large value of w t is set, a larger

ize of the consensus set will be found. As a consequent, more

omputational time before searching good samples is required. We

ackle that the good samples selection helps to estimate the better

odel even with an initial probing the data via a small consen-

us set. Once the stack U 

∗
n of initial samples is conducted, we then

earch for good samples which satisfy the geometrical principles

onstraints of a 3-D cylindrical object as following. A calculating in

he cost/score functions (e.g., our GCSAC adopted a Maximal Log-

ikelihood function in MLESAC or counting the number of inlier

oints in original RANSAC algorithms) for the estimated cylindri-

al object (as specified in Section 3.2 ) is suffered from two free

arameters. While the first parameter, threshold distance T , it is a

xed and pre-determined value, the second one, an angle restricts

he deviation of a points normal from that of the estimated shape

17] . These conditions are investigated as following analyses. The
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Fig. 2. Geometrical parameters of a cylindrical object. (a)–(c) Explanation of the geometrical analysis to estimate a cylindrical object. (d)–(e) Illustration of the geometrical 

constraints applied in GCSAC. (f) Result of the estimated cylinder from a point cloud. Blue points are outliers, red points are inliers. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. A diagram of the cylindrical object estimation using GCSAC. 
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s  
rst condition is illustrated in Fig. 4 . In this example, a pair of in-

ier p 1 and an outlier p 2 is selected. This is a common case when at

 certain iteration, two samples are randomly drawn. As shown in

ig. 4 (a), γ c - the main axis of the cylindrical object, is incorrectly

stimated. Consequently, the estimated cylinder is a wrong estima-

ion (as shown in Fig. 4 (b)). This case can be eliminated using the

rst condition when a threshold distance T specifying inliers is ap-

lied. For instance, a standard cost function of RANSAC counts the

umber of inliers. As a consequent, yielding is a very low in this

ase. 

For the second parameter, let’s denote random inlier samples

s p 1 , p 2 and p 3 , as shown in Fig. 2 (d). In case of drawing two

andom points p 1 , p 3 , obviously, the first criteria is quickly satis-

ed because both of these samples are inliers ( w i is larger than

 t = 0 . 1 ). However, as shown in Fig. 2 (d), the direction of the axis

2 is totally different from ground-truth. Our second criterion (or

earch good samples) aims to update the initial samples (for ex-
mple, p 3 should be updated by p 2 ). To obtain this, a centroid

oint I is a point on the main axis of the cylinder that the ra-

ius is the Euclidean distance from p 1 to I . We first built a plane

that is perpendicular to the plane PlaneY and consists of n 1 .

herefore its normal vector is n π = (n PlaneY × n 1 ) where n PlaneY is

he normal vector of PlaneY , as shown in Fig. 4 (a). In the other

ords, n 1 is nearly perpendicular with n ∗
2 

where n ∗
2 

is the projec-

ion of n 2 onto the plane π . This observation leads to the criterion

elow: 

 p = arg min 

p 2 ∈{ U n \ p 1 } 
{ n 1 · n 

∗
2 } (5) 

f c p is close to 0 then n 1 and n 

∗
2 are orthogonal (perpendicular)

ectors. It is noticed that in the example as shown in Fig. 2 (e), the

rojection of n 3 onto plane π should be parallel with n 1 . Therefore

he dot product n 1 · n 

∗
3 

is a large scalar value. 

Observation is that the geometrical constraints can be applied

s a pre-processing step. As results, a list of selected samples

hich ensure the constraints are extracted. We then apply a lin-

ar fitting algorithm for estimating a model. This scheme is quite

imilar to the åsimple strategy in [4] . However, they observed that

his scheme does not lead to correct estimates. In our practical ex-

eriments, when the residual distribution is biased and the radius

f the cylinder is large, i.e. outlier points, the estimated model pa-

ameters are no longer correct. The FILSAM works well only when

he outliers do not have signification influence, that means the ma-

ority of inliers have bigger impacts on the least square’s results.

heoretically, given N samples, maximal the number of selections

s 
(

N 
2 

)
= N(N − 1) / 2 for evaluating quality of whole samples. There-

ore, total cost of FILSAM is significantly large. 

. Experimental results 

The proposed methods are warped by C++ programs using a PCL

.7 library on a PC with Core i5 processor and 8G RAM. The pro-

ram runs sequentially as a single thread. The performances of the

roposed algorithm are evaluated in three experiments for cylinder

stimation. 

.1. Descriptions of the datasets for evaluation 

The first ( 1 st ) dataset is purely artificial data which consists of

ix different subsets, denoted from dC to dC . For each subset dC ,
1 6 i 
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Table 1 

The characteristics of the first dataset (synthesized data). 

Data set Characteristics of the generalized data 

Height/Radius Direction of main axis Spatial distribution of inliers Spread of outliers 

dC 1 , dC 4 1 /2 parallel with the z-axis Around of a cylinder [ −3 , 3] , [ −4 , 4] 

dC 2 , dC 5 1 /2 parallel with the y-axis Around of a cylinder [ −3 , 3] , [ −4 , 4] 

dC 3 , dC 6 1 /2 parallel with the y-axis one half of a cylinder [ −3 , 3] , [ −4 , 4] 

Fig. 4. (a) Setting geometrical parameters for estimating a cylindrical object from a point cloud as described in Section 3.2 . (b) The estimated cylinder (green one) from an 

inlier p 1 and an outlier p 2 . As shown, it is an incorrect estimation. (c) Normal vectors n 1 and n ∗2 on the plane π are specified. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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inlier ratio is increased by a step of 5% from 10% to 80%. Therefore,

there are fifteen point clouds. They are denoted from dS 1 to dS 15 .

A point cloud dS i consists of three thousand points. An inlier data

point ( x i , y i , z i ) of dS i lying on cylinders curved-surface is gener-

ated as follows: x i = cos (θi ) , z i = sin (θi ) , y i is randomly selected in

[0, 1], θ i is randomly selected from [0, 2 π ]. Outliers are generated

randomly as a normal distribution. Characteristics of each set dC i 
are described in Table 1 . The major differences between a dC i to

dC j could be the main axis’s orientation, σ of the normal distribu-

tion for generating outlier/inlier data; or what is spatial distribu-

tion of inliers. Fig. 5 illustrates the synthesized data of dC 1 , dC 2 ,

dC 3 whose inlier ratio equals to 50%. 

The second ( 2 nd ) dataset is collected from public available data

sets which contains 300 objects belonging to 51 categories [11] .

In this study, we collect only videos consisting of the cylindrical

objects. Totally, this dataset consists of 8 coffee mugs, 14 food cans,

5 food cups, 6 soda cans. 

The third ( 3 rd ) dataset is collected in real experiments in our

lab-based environment where cylinders (e.g., a coffee cup) are lo-

cated on the table. The main purpose of this setup is to deploy

an aided-service which supports grasping queried objects for visu-

ally impaired people. In this set up, a Kinect is mounted on the

chest of a person and he is moving around a table. This setup aims

to detect a cylindrical object in real scenarios (e.g., to find a coffee

cup in the kitchen). This dataset consists of four types of cups with

different radii (3.75 cm, 3.5 cm, 3.25 cm, 3.0 cm). The cup is made

of porcelain. Details of the experimental setup and so forth dataset

are described in [12] . 
Fig. 5. Illustrations of dC 1 , dC 2 , dC 3 point clouds of the first dataset in case of 50% inlier 

references to colour in this figure legend, the reader is referred to the web version of this
.2. Evaluation measurements 

Let notate a ground-truth cylinder C t ( x t , y t , z t , r t , a t ) and the

stimated one C e ( x e , y e , z e , r e , a e ) where ( x t , y t , z t ), ( x e , y e , z e ) are

he coordinates of the center points, r t , r e are the radii; a t , a e are

he angles between the main axis and the normal vector of the

able plane of C t and C e , respectively. To evaluate the performance

f the proposed method, we use following measurements: 

• The inlier ratio w of the best estimation is defined by: 

w = 

# inliers 

# number of samples 
(6)

• Let denote the relative error of the estimated inlier ratio to be

E w 

. The smaller E w 

is, the better the algorithm is. 

E w 

= 

| w − w gt | 
w gt 

× 100% (7)

where w g t is the calculated by Eq. (6) using ground-truth in-

liers. This index is applied to the synthesized data (the first

dataset) only because ground-truth inliers of real datasets are

not precisely specified from original scenes. 
• The total distance errors S d is calculated by a summation of dis-

tances from any point p j to the estimated cylinder C e . S d is de-

fined by: 

S d = 

N ∑ 

j=1 

d(p j , C e ) (8)

• The processing time t p is measured in milliseconds ( ms ). The

smaller t p is the faster the algorithm is. 
ratio. The red/blue points are inliers/outliers, respectively. (For interpretation of the 

 article.) 
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Table 2 

Average results of the algorithms on synthesized dataset. The experiment on this data 

was repeated 50 times for statistical evaluation. 

Dataset/ Measure Method E w (%) S d t p ( ms ) E a ( deg .) E r (%) 

1 st Dataset MLESAC 42.3 1736.04 768.63 15.8 14.15 

FILSAM 36.54 1733.78 386.22 14.35 12.7 

GCSAC 20.01 1702.09 58.71 8.76 3.83 
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• The relative error of the estimated radius E r is the difference of

the estimated radius r e and the ground truth one r t . 

E r = 

| r e − r t | 
r t 

× 100% (9) 

• Let denote E a infer a difference between the estimated angle a e 
and truth one a t . E a is calculated by: 

E a = | a e − a t | (10)

For comparative evaluations, the proposed method (named GC-

AC) is compared with two different schemes, as shown in Fig. 1 .

ne is original implementations of the MLESAC algorithm; and

he second one is named FILSAM. FILSAM utilizes the geomet-

ical constraints to filter out the good samples , before apply-

ng a linear fitting algorithm. For each evaluation, we denote

he corresponding result of each method as following format:

ame _ of _ measurement name _ of _ method . For instance, E MLESAC 
w 

is the in-

ier ratio error of the MLESAC algorithm. In the evaluations for all

atasets, the smaller indexes (e.g., E w 

, E r , E a ) are, the better models

re estimated. 

For setting the parameters, we fixed thresholds of the estima-

ors with T = 0 . 05 (or 5 cm), w t = 0 . 1 . T is a distance threshold to

et a data point to be an inlier or outlier. For fair evaluations, T

s set equally for all three fitting methods. Choosing an optimal T

alue is outside of the scope of this research. In case of the first

ataset, the measurement error is known as a Gaussian with zero

ean and standard deviation. According to [8] (Page 119), once the

istribution of noise data is known in advance (e.g., the spread of

he outliers is specified in Table 1 ), the threshold distance T is set

y T 2 = 5 . 99 δ2 . Therefore, in the experimental evaluation, thresh-

ld distance T is equal 0.05. It ensures that an inlier will only be

ncorrectly rejected 5% of the time. For the real datasets (the sec-

nd and third datasets), the threshold distance T is chosen empiri-

ally ( T = 0 . 05 ). We observe in the real datasets that the cylindrical

bjects have common shapes and sizes. The threshold T is set 0.05

hat is to appropriate with the size of the objects (e.g., the average

adius of a coffee mug is about 3.75 cm). With threshold T = 0 . 05 ,

t equals only 13% of a common radius. 

As discussed in Section 3.3 , w is a small value because this

hreshold is easier probing inliers from original data. In common

ases, inlier ratios are usually higher than 10% (e.g., often from 50%

o 60%). To filter out the good samples in the pre-processing step

f the FILSAM scheme, we collect the good samples from a number

f iterations. In practice, we set 10% from the maximally available

terations. 

.3. Experimental results 

We first examine the performances of GCSAC in terms of the

uality of the estimated model and computational time on the

rst dataset. Because of using the synthesised data, we can con-

rol both ground-truth inlier ratios and handle the optimal solu-

ion on each point cloud dS i . As shown in Tables 2 and 3 , all error

easurements inferring quality of the estimated model using our

ethod (e.g., E w 

, E r , E a ) are lower than that of MLESAC or FILSAM.

ig. 6 investigates deeper the stop terminations (or convergence)

nd residuals of GCSAC versus MLESAC. As shown in Fig. 6 left
anel, comparing to MLESAC, the proposed technique converges

aster and the stop criteria is met. Refer to Eq. (2) , it may occur

hat at a certain iteration, w determines a K less than the num-

er iterations for samples selection that have already performed,

he number of iterations is reduced. However, the number of itera-

ions of both method is the unequal decreasing with thedecreasing

f inlier ratio because the sampling process is random and the es-

imation algorithm chooses a good sample when the number of

terations is small. 

Fig. 7 demonstrates that GCSAC is able to estimate a cylindrical

bject even with a point cloud with an outlier rate of 90%. Intu-

tively, the estimated model by GCSAC is much better than that

f MLESAC (right-panel, Fig. 7 ). In terms of quantitative evaluation,

able 2 shows measurements of E r , E a which also confirms the per-

ormances of GCSAC versus MLESAC and FILSAM. Particularly, in

he case of the point clouds with low inlier ratios (e.g. from 10%

o 45%), the estimated model using MLESAC is failed because these

esults are far from the corresponding ground-truth. The angle er-

or is ( E a = 15 . 8 ◦) for MLESAC, whereas GCSAC’s error is only 8.76 °.
enerally, the quality of the estimated models using GCSAC and

ILSAM is quite similar (as shown by E a and E r ). However, the pro-

essing time is significantly different between the two methods.

hile FILSAM requires a large computational time ( t p = 386 ms),

CSAC requires only 58.71 ms. 

For the second and the third datasets, they consist of natu-

al scenes which are taken at different viewpoints and various

ypes/sizes of the cylindrical objects. The effectiveness of the pro-

osed search for good samples of GCSAC is illustrated by Fig. 8 .

hile random MSS samples generate a failed candidate, as shown

n Fig. 8 (a) (whose current inlier rate is 0.03). These samples are

pdated using the searching process. Then a better model is esti-

ated with the inlier rate of 0.19 (refer to the current best model

n Fig. 8 (c). Fig. 9 illustrates some example results using GCSAC on

he second dataset. The evaluation results are reported in Table 3 .

ll of the evaluation results show that GCSAC outperforms the

LESAC and FILSAM methods. Specially, the estimated inlier ratio

 , and total distance error S d confirm that fitting results are fairly

ood with GCSAC. While FILSAM is the worst case, the MLESAC is

uite modest. These observations are also noted in [2,4] . 

We then deploy GCSAC in a real scenario where a visually im-

aired person queries a coffee cup in a kitchen [12] . The proposed

ethod therefore can be used as a robust estimator for locating

he coffee cup. Fig. 10 (top panel) illustrates our experiment setup,

nd Fig. 10 (bottom panel) shows corresponding results, where the

offee cups are marked in the point clouds. General performances

f GCSAC versus others are summarized in Table 3 . The inlier ratios

n these evaluations are quite modest with more than 50% of en-

ire data points. Therefore, the processing time of GCSAC is reduced

ompared to MLESAC and FILSAM. For each scenario, the computa-

ional time of GCSAC, MLESAC, FILSAM is 9.2 ms (or 110 fps), 9.9ms

or 100 fps) and 10.64 ms (or 94 fps), respectively. The accuracy of

ocating the interested object is verified using a chessboard which

s prepared in the setup. 

The first dataset (synthesized point clouds, as described in

able 1 ) for evaluation and the implementations of the pro-

osed GCSAC methods are available at http://mica.edu.vn/perso/

e- Van- Hung/GCSAC/index.html . 

http://mica.edu.vn/perso/Le-Van-Hung/GCSAC/index.html
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Table 3 

Experimental results on three datasets 2, 3. The experiments were repeated 20 times, then errors 

are averaged. 

Dataset/Measure Method w (%) S d t p ( ms ) E a ( deg .) E r (%) 

2 nd Dataset (Coffee mug) MLESAC 9.94 3269.77 110.28 9.93 

FILSAM 11.23 3032.21 98.62 24.82 

GCSAC 13.83 2807.40 33.44 7.00 

2 nd Dataset (Food can) MLESAC 19.05 1231.16 479.74 19.58 

FILSAM 19.32 1148.07 321.7 25.4 

GCSAC 21.41 1015.38 119.46 13.48 

2 nd Dataset (Food cup) MLESAC 15.04 1211.91 101.61 21.89 

FILSAM 16.25 1159.3 201.83 20.14 

GCSAC 18.8 1035.19 14.43 17.87 

2 nd Dataset (Soda can) MLESAC 13.54 1238.96 620.62 29.63 

FILSAM 16.25 1190.43 345.82 33.35 

GCSAC 20.6 1004.27 16.25 27.7 

3 rd Dataset MLESAC 46.04 63.99 9.87 23.87 20.85 

FILSAM 47.59 54.93 10.64 22.6 17.81 

GCSAC 48.96 49.26 9.20 20.50 15.47 

Fig. 6. The number of iterations of GCSAC (left side) and MLESAC (right side) for estimating a cylinder from point clouds in the first dataset. The results are given by 

averaging 50 run times. 

Fig. 7. The estimated cylinders (green points) in a point cloud of the first dataset with only 10% inlier. Right panel: GCSAC results. Left panel: MLESAC result. Red/blue points 

are inliers and outliers, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusions 

In this paper, we have presented a new frame-work of a

RANSAC-based algorithm for fitting a primitive geometrical model

from a point cloud. The key idea of the proposed method is a

new sampling process where good samples are qualified using ge-
metrical constraints. We have shown that by adaptively updating

umber of sample selection, the proposed algorithm more quickly

eets the termination conditions. We then applied the proposed

ethod to fit cylinder objects. It has no limitation to extend the

urrent work to other primitive shapes such as spheres, cones, or

oxes. In the current version, we evaluated intensively the pro-
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Fig. 8. An illustration of GCSAC’s at a k th iteration to estimate a coffee mug in the second dataset. Left: the fitting result with a random MSS. Middle: the fitting result 

where the random samples are updated due to applying the geometrical constrains. Right: the current best model. 

Fig. 9. Result of coffee mug fittings. Ground-truth objects are marked as red points; estimated ones are marked as green points. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. The cup is detected by fitting a cylinder. Top row: The scenes in Dataset 3 captured at different view-points; Bottom row: The results of locating a coffee cup using 

GCSAC in corresponding point clouds. 
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osed method on different datasets. Our proposed method can be

sed to estimate a cylinder from point clouds which has low inlier

atios. In the case of real data, we also obtained a real-time per-

ormance for fitting the cylindrical-like objects such as coffee cup,

ood can, soda can (22 fps). These results suggest a feasible way to

eploy aided-service to support visually impaired people grasping

bjects which are common requested in their daily life activities. In

he future, we continue to validate these improvements on other

eometrical structures, especially with a robust estimator that is

ndependent of inlier distribution and error thresholds. 
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