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Abstract

Estimating parameters of a primitive shape from a 3-D point cloud usually meets difficulties
due to noises of data require a huge amount of computational time. The real point cloud of
objects in the 3D environment have many noise and may be obscured when they are captured
from Kinect version 1. In this paper, we utilize and analyse of spherical estimation steps from
the point cloud data in Schnabel et al. [1]. From this, we propose a geometrical constraint to
search ’good’ samples for estimating spherical model and then apply to a new robust estimator
named GCSAC (Geometrical Constraint SAmple Consensus). The proposed GCSAC algorithm
takes into account geometrical constraints to construct qualified samples. Instead of randomly
drawing minimal subset sample, we observe that explicit geometrical constraint of spherical model
could drive sampling procedures. At each iteration of GCSAC, the minimal subset sample is
selected by two criteria (1) They ensure consistency with the estimated model via a roughly
inlier ratio evaluation; (2) The samples satisfy geometrical constraints of the interested objects.
Based on the qualified samples, model estimation and verification procedures of a robust estimator
are deployed in GCSAC. Comparing with the common robust estimators of RANSAC family
(RANSAC, PROSAC, MLESAC, MSAC, LO-RANSAC and NAPSAC), GCSAC overperforms
in term of both precisions of the estimated model and computational time. The implementations
and evaluation datasets of the proposed method are made publicly available.

Index Terms

Robust Estimator; Primitive Shape Estimation; RANSAC and RANSAC Variations; Quality
of Samples; Point Cloud data.

I. INTRODUCTION

ESTIMATING parameters of a primitive shape using robust estimators is a fundamental
research in the fields of robotic and computer vision. To build the aiding system for

visually impaired people or robot control system for object grasping then objects detection,
pose estimation of object in the 3D environment are the important steps. Therein, the object
detection that using the primitive shapes detection from the point cloud data of objects is a
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method. Currently, many robust estimators have been proposed such as Hough Transform
[2], RANSAC [3], RANSAC variations (e.g., MLESAC [4], PROSAC [5], LO-RANSAC
[6], etc). RANSAC is a efficient iteration algorithm that is proposed by Fischler et al.
[3] since 1981. Originally, a RANSAC paradigm draws randomly a Minimal Sample Set
(MSS) from a point cloud data without any assumptions. As a result, RANSAC must run
a relatively large number of iterations to find an optimal solution before stopping criterion.
To improve performances, RANSAC-based methods [7] focus on either a better hypothesis
from random samples or higher quality of the samples satisfying the estimated model. In this
paper, we tackle a new sampling procedure which utilizes geometrical constraints to qualify
a MSS. The MSS consisting of good samples is expected to generate better hypotheses,
and as result, the better-estimated models are achievable. We examine the proposed method
with fitting a sphere.

In the proposed robust estimator, a MSS is a stack consisting of samples which ensure
two criteria: (1) The selected samples must ensure being consistent with the estimated model
via a roughly inlier ratio evaluation; (2) The samples satisfy geometrical constraints of the
interested objects (e.g., sphere constraints). The proposed constraints come from the explicit
geometrical properties of the interested shapes. The good samples of the current stack are
highly expected to generate a consensus set which quickly reaches to the maximal inlier
ratio. Consequently, the number of iterations could be adaptively updated (as the termination
manner of the adaptive RANSAC [8]). In GCSAC, we utilize the maximum log-likelihood
of MLESAC algorithm to evaluate the estimated model. Finally, the effectiveness of the
proposed method is confirmed by fitting results of a spherical object. The evaluations
compare the performances of the proposed method and common RANSACs as original
RANSAC, PROSAC, MLESAC, MSAC [4], LO-SAC, NAPSAC [9]. The implementations
of the proposed method and evaluation datasets are made publicly available.

II. RELATED WORK
For a general introduction and performances of RANSAC family, readers can refer

to good surveys in [10], [7]. In the context of this research, we briefly survey related
works which are categorized into two topics. First, efficient schemes on the selection of
minimal subset of samples for RANSAC-based robust estimators; and second, techniques
for estimating a primitive shape, that focus into the fitting a spherical.

For the first topic, because the original RANSAC is very general with a straightfor-
ward implementation, it always requires considerable computational time. Many RANSAC
variants have been proposed with further optimization for a minimal sample set (MSS)
selection. Progressive Sample Consensus or PROSAC [5] orders quality of samples through
a similarity function of two corresponding points in the context of finding good matching
features between a pair of images. In PROSAC algorithm, the most promising hypotheses
are attempted earlier, therefore drawing the samples is implemented in a more meaningful
order. However, PROSAC faces critical issues for defining the similarity function. LO-
RANSAC [6] and its fixed version LO+-RANSAC [11] add local optimization steps within



RANSAC to improve accuracy. To speed up the computation, adaptive RANSAC [8] probes
the data via the consensus sets in order to adaptively determine the number of selected
samples. The algorithm is immediately terminated when a smaller number of iterations
has been obtained. With the proposed method, the good samples are expected to generate
the best model as fast as possible. Therefore, the termination condition of the adaptive
RANSAC [8] should be explored. Recently, USAC [12] introduces a new frame-work for
a robust estimator. In the USAC frame-work, some strategies such as the sample check
(Stage 1b) or the model check (Stage 2b), before and after model estimation, respectively,
are similar to our ideas in this work. However, USAC does not really deploy an estimator
for primitive shape(s) from a point cloud. A recent work [13] proposes to use geometric
verification within a RANSAC frame-work. The authors deployed several check procedures
such as sample relative configuration check based on the epipolar geometry. Rather than the
”check” procedures, our strategies anticipate achieving the best model as soon as possible.
Therefore, the number of iterations is significantly reduced thanks to the results of the
search for good sample process. The RANSAC-based algorithm used in the method of
Chen et al. [14] and Aiger et al. [15] for registering of partially overlapping range images
and partial surfaces of a 3D object.

For primitive shape estimation from 3-D point clouds, readers can refer to a survey
on feature-based techniques [16]. Some fitting techniques, for instance, multiscale super-
quadric fitting in [17], Hough transform in [18], are commonly used. Marco et al. [19], Anas
et al. [20] used the 3D Hough Transform to estimate, extract sphere from point cloud data.
However, the robust estimators (e.g., RANSAC family [7]) are always preferred techniques.
Original RANSAC [3] demonstrates itself robust performances in estimating cylinders from
range data. The authors in [21] and [1] formulate primitive shapes (e.g., line, plane, cylinder,
sphere, cone) using two to seven parameters such as a cylinder has seven parameters, a
sphere has four parameters, a cone has seven parameters, etc. Schnabel et al. [1] defines
primitive shapes through some samples and their normal vectors. In this study, geometrical
analysis of a sphere in [1] is adopted for defining criteria of the qualified samples as well
as for estimating parameters of the interested model from a 3-D point cloud.

III. PROPOSED METHOD
A. Overview of the proposed robust estimator - GCSAC

To estimate parameters of a primitive shape, all of RANSAC variations in the RANSAC
family [7] (RANSAC, MLESAC, PROSAC, MSAC, LOSAC, NAPSAC, .etc) implemented
some steps as follows: drawing randomly a Minimal Sample Set (MSS)(RANSAC, MLE-
SAC, MSAC) or semi-random (PROSAC) or using constraints of the sample’s distribution
(NAPSAC); estimating the model; evaluating the model and choosing the best model. This
scheme is repeated K iterations. All of them are shown in the top panel of Fig. 1.

In this study, abilities of the proposed robust estimator (GCSAC) will be consolidated
with a sphere. An overview of GCSAC algorithms is shown in the button panel of Fig. 1.
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Fig. 1. Top panel: Over view of RANSAC-based algorithm. Bottom panel: A diagram of the GCSAC’s implementations.

Following sections will explain the details of GCSAC’s implementations.
The proposed GCSAC constructs a MSS by the random sampling and sampling using

geometrical constraints of each primitive shape estimation, the aim of it is the generating
the consensus of samples to be easy. To do this, a low inlier threshold is pre-determined.
After only (few) random sampling iterations, the candidates of good samples could be
achieved. Once initial MSS is established, its samples will be updated by the qualified one
(or good sample) so that the geometrical constraints of the interested object is satisfied. The



estimated model is evaluated according to Maximum Log-likelihood criteria as MLESAC
[4]. The final step is to determine the termination condition, which is adopted from the
adaptive RANSAC algorithm [8]. Once the higher inlier ratio is obtained, the criterion
termination K for determining the number of sample selection is updated by:

K =
log(1− p)
log(1− wm)

(1)

where p is the probability to find a model describing the data, m is the minimal number of
samples to estimate a model, w is percentage of inliers in the point cloud. While p often to
set a fixed value (e.g., p = 0.99 as a conservative probability), K therefore depends on w
and m. The algorithm terminates as soon as the number of iterations of current estimation
is less than that has already been performed.

Details of the GCSAC’s implementation are given in Fig. 1. Obviously, the criteria which
define the good samples are the most important. Based on the idea of adaptive RANSAC
[8] to probe initial samples, GCSAC starts from roughly select of initial good samples. At
each iteration, we assume that the worst case of inlier ratio wt = 0.1(10%) is determined,
to initialize the stack U∗n, where U∗n is used to store m− 1 kept points and its inlier ratio
wi. A consensus set, therefore containing more than 10% of the data is easily found. A
model is estimated from m random samples. As estimating a sphere is m = 2 [1]. After
that, U∗n is reset. m samples and the inlier ratio wi of the estimated model is stored into
U∗n if wi is equal to or greater than wt. And then, the MSS utilizes m − 1 kept good
samples. The remaining mth sample will be replaced by a better one which best satisfies
the geometrical constraints of the interested shape. The good samples which satisfy the
geometrical principles of a primitive shape are explained in Section III-B. If none of the
iterations find out that satisfies wi ≥ wt, the estimation algorithm degrades to the original
MLESAC. The inlier ratio of the iteration depends on the threshold T , which chooses an
optimal T value is out of the scope of this research.

B. Geometrical analyses and constraints for qualifying good samples
The geometrical model of a spherical object can be presented by four geometrical

parameters [1]. In following sections, the principles of 3-D sphere are explained. Based on
this geometrical analysis, the related constraints are given to select good samples.

1) Geometrical analysis for a spherical object: A sphere is determined by the following
parameters: a centroid point which is denoted as Isp(x0, y0, z0); its radius Rsp. To estimate
sphere’s parameters, Schnabel et al. [1] propose to use two points (p1, p2) with their
corresponding normal vectors (n1,n2) (see Fig. 2(a)). The centroid Isp (a pink point Fig.
2(c)) is a middle point of the shortest line (a green line of Fig. 2(b)) which segments two
lines given by (p1,n1) and (p2,n2). Identifying two lines pa = p1+t∗n1 and pb = p2+t∗n2

are shown in Fig. 2(b). t is the parameter of two lines pa, pb formulations. The radius Rsp



p1

p2

n2

n1

p2

p1

n1

n2

pb
pa

p1

p2

n1

n2

pb
pa

Isp

p1 p2

Isp

p1

p2

Isp

pa

pb

n1

n2

Estimated 
sphere

Fig. 2. Estimating parameters of a sphere from 3-D points. Red points are inlier points. In this figure, p1, p2 is two
selected samples for estimating a sphere (two gray points), they are outlier points. Therefore, the estimated sphere is
wrong of centroid and radius (see green sphere (d)). The sub-figures are illustrated in different view-points to clearly
observe normal vectors for the geometrical analysis.

is determined by averaging the distance of Isp to p1 and Isp to p2. The estimated sphere is
shown in Fig. 2(d).

The proposed geometrical constraints for fitting spherical objects: As above denoted,
a sphere is estimated from two points (p1, p2) and their normal vectors (n1,n2). In GCSAC,
once stack U∗n consisting of initial good samples is specified, we store p1 and search p2
in Un and difference p1 (p2 ∈ {Un \ p1}). We observe that to generate a sphere, the
triangle (p1Ispp2) should be an isosceles, as shown in Fig. 2(e). This observation could be
formulated by:

shp = arg min
p2∈{Un\p1}

{(|| p1Isp || − || p2Isp ||)} (2)

The geometrical constraints in Eq. (2) means that if shp is close to 0 then the triangle
p1Ispp2 is nearly isosceles one.

IV. EXPERIMENTAL RESULT
A. Dataset

The proposed method is warped by C++ programs using a PCL 1.7 library on a PC
with Core i5 processor and 8G RAM. The program runs sequentially as a single thread.
We have evaluated performances of GCSAC on synthesized datasets of the cylinder, sphere



Fig. 3. Illustrating of our setup to collect the dataset

and cone. Each dataset consists of six different subsets. Characteristics of each subset are
described in Table I. Major differences could be σ of the normal distribution for generating
outlier/inlier data; or the spatial distribution of inliers.

For the sphere dataset (’first sphere’), they are denoted from dC1 to dC6. In each subset
dCi, inlier ratio is increased by a step of 5% from 15 to 80 %. Therefore, there are fourteen
point clouds. They are denoted dS1 to dS14. They have the maximal distance to true sphere
0.025 (or 2.5cm). Outliers are generated randomly in the limitation as Tab. I. A point cloud
dSi consists of 3000 points. These point clouds are generated from the curved surface of
a true sphere: x2 + y2 + z2 = 1. We also generate random points outside the surface of the
sphere as outliers.

Moreover, we also evaluated on a real datasets. This is the dataset of two balls in four
scenes, each scene has been included 500 frames and each frame has a ball on the table.
It named ’second sphere’. The setup of our experiment implemented a similar as [22] and
is illustrated in Fig. 3.

To separate the data of a ball on the table, we have to implement some steps as below.
First is the table plane detection that used the method in [23]. After that, the original
coordinate is rotated and translated that the y-axis is parallel with the normal vector of the
table plane as Fig. 3. The point cloud data of balls is separated with the point cloud data
of the table plane. It is illustrated in Fig. 5.

B. Evaluation Measurements
Let notate a ground-truth of model Mt(xt, yt, zt, rt) and the estimated one

Me(xe, ye, ze, re) where (xt, yt, zt), (xe, ye, ze) are the coordinates of the center points, rt, re
are the radius. To evaluate the performance of the proposed method, we use following
measurements:
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Fig. 4. Point clouds of dC1, dC2, dC3 of the ’second sphere’ dataset (the synthesized data) in case of 50% inlier ratio.
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Fig. 5. Illustrating the separating the point cloud data of a ball in the scene.

- Let denote the relative error Ew of the estimated inlier ratio. The smaller Ew is, the
better the algorithm is.

Ew =
|w − wgt|
wgt

× 100 (3)

where wgt is the defined inlier ratio of ground-truth; w is the inlier ratio of the estimated
model.

w =
#inliers

#number of samples
(4)

- The total distance errors Sd [24] is calculated by summation of distances from any
point pj to the estimated model Me. Sd is defined by:

Sd =
N∑
j=1

d(pj,Me) (5)



TABLE I
THE CHARACTERISTICS OF THE GENERATED SPHERE DATASET (SYNTHESIZED DATASET)

Dataset Characteristics of the generalized data

Radius Spatial distribution
of inliers

Spread of
outliers

dC1, dC4 1 Around of a sphere [-3, 3], [-4, 4]
dC2, dC5 1 Around of a sphere [-3, 3], [-4, 4]
dC3, dC6 1 one half of a sphere [-3, 3], [-4, 4]

- The processing time tp is measured in milliseconds (ms). The smaller tp is the faster
the algorithm is.

- The relative error of the estimated center (only for synthesized datasets) Ed is Eu-
clidean distance of the estimated center Ee and the truth one Et. It is defined by:

Ed = |Ee − Et| (6)

- The relative error of the estimated radius Er is different of the estimated radius re and
the truth one rt. It is defined by:

Er =
|re − rt|

rt
× 100% (7)

The proposed method (GCSAC) is compared with six common ones in RANSAC family.
They are original RANSAC, PROSAC, MLESAC, MSAC, NAPSAC, LO-RANSAC. For
setting the parameters, we fixed thresholds of the estimators with T = 0.05 (or 5cm),
wt = 0.1, sr = 3 (cm). T is a distance threshold to set a data point to be inlier or outlier.
sr is the radius of a sphere when using NAPSAC algorithm. For the fair evaluations, T is
set equally for all seven fitting methods.

C. The evaluation results
The performances of each method of the synthesized datasets are reported in Tab. II. For

whole three datasets, GCSAC obtains the highest accuracy and lowest computational time.
More generally, even using same criteria as MLESAC, the proposed GCSAC obtains better
estimated model as shown by Ew measurements. The experimental results also confirmed
the proposed constraints are working well with different primitive shapes. Although Ew

of the sphere dataset is high (Ew = 19.44%), this result is still better than the result
of the compared methods. Among the compared RANSACs, it is interesting that original
RANSAC generally give stable results for estimating a sphere. However, original RANSAC
requires a high computational time. The proposed GSSAC estimates the models slightly
better than the original RANSAC.

Table III also shown the fitting results of GCSAC method are more accurate than
RANSAC variations. The results on the ’second sphere’ are high on all of the methods such
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Fig. 6. Illustrating the fitting sphere of GCSAC and some RANSAC variations on the synthesized datasets, which have
15% inlier ratio. Red points are inlier points, blue points are outlier points. The estimated sphere is a green sphere.

TABLE II
THE AVERAGE EVALUATION RESULTS OF SYNTHESIZED DATASETS. THE SYNTHESIZED DATASETS WERE REPEATED

50 TIMES FOR STATISTICALLY REPRESENTATIVE RESULTS.

Dataset/
Method Measure RANSAC PROSAC MLESAC MSAC LOSAC NAPSAC GCSAC

’first
sphere’

Ew(%) 23.01 31.53 85.65 33.43 23.63 57.76 19.44
Sd 3801.95 3803.62 3774.77 3804.27 3558.06 3904.22 3452.88
tp(ms) 10.68 23.45 1728.21 9.46 31.57 2.96 6.48
Ed(cm) 0.05 0.07 1.71 0.08 0.21 0.97 0.05
Er(%) 2.92 4.12 203.60 5.15 17.52 63.60 2.61

as the result of GCSAC when using the w measure is 100%, it is illustrated in Fig. 7(a).
Due to the ball data has a small noise ratio and the threshold T to determine inlier points
is large (0.05(5cm)). While the radius of a ball is 5cm to 7cm. All of the results shown, the
performance of GCSAC is better than the RANSAC variations when implements estimating
primitive shapes on the point cloud data, that has low inlier ratio (less than 50%). They
were also shown, can use to the GCSAC algorithm for detecting, finding spherical objects
in the real scenario. As a visually impaired person come to a sharing room or a kitchen to
find a ball on the floor.



TABLE III
THE AVERAGE EVALUATION RESULTS ON THE ’second sphere’ DATASETS. THE REAL DATASETS WERE REPEATED 20

TIMES FOR STATISTICALLY REPRESENTATIVE RESULTS.

Dataset/
Method Measure RANSAC PROSAC MLESAC MSAC LOSAC NAPSAC GCSAC

’second
sphere’

w(%) 99.77 99.98 99.83 99.80 99.78 98.20 100.00
Sd 29.60 26.62 29.38 29.37 28.77 35.55 11.31
tp(ms) 3.44 3.43 4.17 2.97 7.82 4.11 2.93
Er(%) 30.56 26.55 30.36 30.38 31.05 33.72 14.08

(a)
Fig. 7. Results of ball and cone fittings. The point cloud data of a ball is red points; the estimated spherical is marked
as green points.

V. CONCLUSIONS

In this paper, we proposed GCSAC that is a new RANSAC-based robust estimator for
fitting the primitive shapes from point clouds. The key idea of GCSAC is the combination
of ensuring consistency with the estimated model via a roughly inlier ratio evaluation
and geometrical constraints of the interested shapes that help to select good samples for
estimating a model. Our proposed method is examined with common shapes (e.g., a sphere).
The experimental results confirmed on the synthesized, real datasets that it works well even
the point clouds with low inlier ratio. The results of the GCSAC algorithm compared to the
RANSAC variations in the RANSAC family. In the future, we continue to validate GCSAC
on other geometrical structures and evaluate the proposed method with the real scenario of
detecting multiple objects.
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