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ABSTRACT—Plane detection is an important research in the robotics community. Its results are utilized in many 
applications such as 3D reconstruction, scene analysis and segmentation, objects localization so on. In context of an 

assistive system forvisually impaired people, plane detection, or more specilized, table plane detection is a prerequisite 

step for further procedures such as object localization and recognition. Although many approaches have been proposed 

for the plane detection such as RANSAC, RANSAC variants, Hough Transform, Least squares. Depending on the context 

of each application, selecting the apprriciate results always required further implementations. But in fact, each specific 

application can only focus on one plane (interested plane). In this paper, we propose a new method for detecting an 

interested plane that is table plane in complex scenes based on depth images captured by a Kinect sensor. Our approach 

proposed algrothims combines PROSAC algorithm (an algorithm for estimating plane model) and geometrical constraints 

of environments. We compared some approaches together. The experimental results show that the proposed method 

outperforms the traditional ones. 

 

I. INTRODUCTION 

 
Plane detection is a fundamental problem in the field of computer vision and robotics. It is applied broadly for many 

different researches.  The researchers can use it for 3D reconstruction [1] from image sequences or RGB-D image, scene 

analysis [2], segmentation [3] [4], etc. In context of the vision-based application supporting visually impaired people, the 

plane detection is an important step. Its results can consit of a table plane in room, where locates many interested object 

such as botle, cups, boxes, so on; or steps on stairs, ground planes, so on.  Such results help to automatic navigating 
direction and obstacle detection [5]. 

Currently, there are many approaches  for plane detection such as RANSAC [7], Hough Transform [8], Least Square [9]. 

However, in computer vision, one of the most widely used methodologies for plane detection is RANSAC and its variant 

[7]. This approach has been proven to successfully detect planes in 2D as well as 3D. They also required a low 

computational cost. The RANSAC [7] is in each iteration step use a part points of point cloud in the estimation model 

plane. It may reduce the processing time and plane extraction in point cloud have high noise. Moreover, there has been 

improvement of RANSAC such as [10] PROSAC (Progressive Sample Consensus), LMEDS (Least Median of Squares), 

MLESAC(Maximum Likelihood Estimation Sample and Consensus), MSAC (M-estimator SAmple and Consensus), etc. 

They increase the accuracy of fitting and extraction plane model in the real time. 

In a complex scene, plane detection results consit of many planes such as ground wall, table plane, etc. These planesare 

surfaces of different objects such as door, cabinet, chair, etc. In [6], [11], a table plane is detected in a simple case using 

RANSAC. The author assumesd that table plan is the largest planes in the scene. Such assumption is not suitable when 

many planes are exisiting in a complex scene. The fact that each specific application requires theselecting the interested 

plane). In context of the constructing an assistive system for visually impaired people, to help people handles objects on 

the table plane the system focuses on detecting table plane. Detection of the interested table plane detection is a prerequise 

step for finding objects on the table. Consequently, we handles practical conditions, where table plane is localed in the 

complex scenes such as in a cafeteria, sharing-room. Such scenes are more complex than laboratory-based enviroment. 
In this paper, we propose a method for the table plane detection in the complex scene by combining of a conventional 

plane detection algorithm and geometrical constraints. The table plane is selected from various type of planes such as floor 

plane, wall plane, table plane, others plane by utilizing geometrical constraints. Such contraints are simple and infer 

context of real enviroments. The proposed method is simple and real time. The experimental results shows it is fast, 

accurate and consistent for detecting table planes in realistical enviroments. Fig. 1 illustrates detection results in which the 

the interested table planes are detected in the complex scenes. 
 

 

 

 

 

 

 

 

 

 

 Figure 1: the results of interested plane detection in the complex scene; points have 

red color belong to table plane. 
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II. RELATED WORK 
The fitting and extracting planes from point cloud have been performed in the many researches [7], [8], [12].  

In researches [7, 12], the authors model planes by four pameters (A, B, C, D). To estimate these parameters, they used a 

threshold method. Points belonging the plane model are inliners, whereas, points not belonging the model are outlines. 

Schnabel et al. [13] showed that RANSAC algorithm consistents with data which has much outliers or only few inliners. 

To find the best parameters fitting with the data, it must be run through several iterations. At each iteration, it will be 

selected randomly a set point in the data for fitting the model. 3D Hough Transform [8], the planes presented by a set point 

in 3D Hough Space with three parameters (θ, φ, ρ). Each point in Hough Space corresponds with a line ρ (see Eq. 1) in R3. 

 

ρ= px . cos θ sin φ + py. sin φ. sin θ + pz . cos φ  (1) 

 

where P (px, py, pz) is a point in 3D, θ is the angle between the normal vector at point P on xy-plane, φ is the angle 

between the line ρ and xy-plane. Least Square [12], it tries to estimate all possible models for a set of data, then choose a 

best model. Both Hough Transform and Least Squares algorithm used all points in the data for the estimation plane 

model that have higher computational time. In Hyun et al.[14], the authors compared the processing time of 3D Hough 

Transform and RANSAC  for estimation plane model on the same dataset. The processing time of 3D Hough Transform is 

409s, 6.74 s of RANSAC. The deviation between ground truth plane and plane detection of 3D Hough Transform is about 

11mm and that approximately is 2mm of RANSAC. Currently, there is some improvement of RANSAC [15]. They are 
divided into groups differently as follows: accurate group (MSAC, MLESAC), fast group (PROSAC, R-RANSAC), robust 

group (MAPSAC). Each algorithm has specific advantages and disadvantages. Such MLESAC is more accurate than 5% 

with RANSAC, the processing time of R-RANSAC is lower than RANSAC. [14], the authors proposed a method which 

may be plane detected in real time from depth images. This method based on the normal vector of four nearest neighbor 

points (up, down, left, right). Points belonging the plane model have same the normal vector. This approach is thirteen 
time as fast as RANSAC on the same dataset. 

 

III. THE PROPOSED METHOD 

A. The proposed framework 
In this paper, we proposed a framework for detecting an interested plane that is table plane in complex scenes based 

on depth image captured by a kinect. The input data represented in 3D space by point cloud data. Algorithms using our 

method combine from PROSAC and geometrical constraints. The processing shows in Fig. 2. 

 

 

 

 

 
 

 

 

 

 

 

 

 

In Fig. 2, the step “interested plane extraction” is most important. The output results are the parameter (A, B, C, D) 

and a set inlier point of table plane.   

Interested plane detection 
Step 1: Point cloud representation 

In this step, the depth data is converted to 3D coordinates. 2D depth image D(x, y) is represented in 3D 

coordinates in which (x, y) is spatial pixel (from RGB image) and z data corresponds of depth. To represent the data, 

we use a function of PCL library (Point Cloud Library). This function combines three values (x, y, z) and parameters 

of kinect from calibration data. Each point of point cloud data has 3D coordiantes (x, y, z). It generates from using the 

depth camera intrinsic [11] and projected the each pixel (xd, yd) to metric 3D space as follows the equation (2). 
 

                 (2) 

 

with fx, fy, cx and cy are focal length and principal point. Then in order reduce the size of the data, we present point cloud 

data by means of a voxel grid. 

Step 2:  Table plane extraction 

Geometrical constraints: 
In [11], [16], the table plane is the largest in the scene that is only an estimation of table plane detection. Our approach 

detects a plane from ground, wall, a table and other planes.  The size of planes is different. We proposed some geometrical 

constraints for table plane detected as follows: 

Figure 2: Framework for interested plane detection  
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Scenario is the visually impaired people mounting a Kinect and moving on the cafeteria, sharing-room. This person wants 

to find some objects on the table. Kinect orientation focuses into table center. The height between Kinect and table plane is 

h. The angle between person height (straight line) and Kinect orientation is α degree. The origin (O xk yk zk) is Kinect 

center. The angle between Kinect orientation and normal vector of table plane is 90 + (90 - α) (see Fig. 3.a). 

The real world is the table plane perpendicular to the wall plane and the normal vector of the table plane (N1) parallel with 

the normal vector of the ground plane (N2) that consistent the Eq. 3. The angle between Kinect orientation and normal 

vector of wall plane is β that is about 90 + (90 - α) <= β < 180 degree (see Fig. 3.b) and about 180 - (90 - α) <= β<180 

degree (see Fig. 3.c) .β is smallest in the case Kinect orientation perpendicular with normal vector of the wall plane (see 

Fig. 3.b). Fig. 3, we show some angle constraints with α=600. 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Based on Kinect location, the direction of the z-axis is in table center. Direction of the x-axis is horizontal. Direction 

of the y-axis is to down. The y value of the points belonging table plane (Vt) is smaller than points belonging ground 

plane (Vf). Two types plane are the same normal vector, but they are the different D coefficient. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
However, the classification between table plane and wall plane is unclear in Fig. 3a, Fig. 3b. Because, the angle between 

the normal vector of wall plane and z-axis is similar to the angle between the normal vector of table plane and z-axis. 

Assuming, maxy is the maximum value following y-axis of point cloud data; miny is the minimum value following y-axis 

of point cloud data. In complex scenes have the table plane, wall plane, ground plane. maxy belongs to the wall plane. miny 

belongs to the ground plane.  Should we use constraint (Eq. 3) for distinguishing between the table plane and the wall 

plane. 

Miny ϵ Uw <  yi  ϵ Ui < maxy ϵ Ug    (3) 

 

Before performing estimates the planes in complex scenes. We used the Kd-tree [20] structure and K-

nearest neighbor algorithm for clustering the point cloud data. It is a structure for clustering unsupervised that base 

the Euclidean distance between points in cloud point. They applied for clustering the point cloud data that presented 

the brief [21] in Algo.1. 

  

Figure 4: Constraint of location plane; it uses for classification between table plane and ground 

plane. 

Figure 3: the angle constraints in for table plane detection; (a), (b), (c) are that case α=600 
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       Algorithm1: Kd-Tree structure in K-neast neighbor for clustering point cloud 

   

     Input: Points of point cloud (P) 

     Output: Regions 

1: Create a Kd-tree representation for the input point cloud dataset P; 

2:    Set up an empty list of clusters C, and a queue of the points that need to be checked Q; 

3:    For every point pi ϵ P, perform the following steps: 

4:    { 

5:       Add pi ϵ P to queue Q 

6:       For every point pi ϵ Q do 

7:            { 

8:                Search for the set Pi
k of point neighbors of Pi in a sphere with radius r < threshD 

9:                For every neighbor pi
k ϵ Pi

k, check if the point has already been processed, and if not add it to Q; 

     10:           } 

     11:         When the list of all points in Q has been processed, add Q to the list of clusters C, and reset Q to     

              an empty list; 

     12:         The algorithm terminates when all points pi ϵ P have been processed and are now part of the list  

                of point clusters C; 

     13:      Regions (k) = C; 

     14:      } 

where threshD is the threshold radius for searching neighbor points.  

 Extraction plane:  
Interested plane extraction is the most important step in our approach. It is combining of PROSAC and geometrical 

constraints. These geometrical constraints presented in the above section.  In this step, we represented to combining detail 

of PROSAC and geometrical constraints for table plane detection. PROSAC is a RANSAC [17] variant that presented the 

brief in Algo. 2.  

   

  Algorithm 2: RANSAC for plane detection  

 

  Input: The point cloud  

  Output: bestPlaneCeo(1,3)  

            1: i=0; bestStd = INT_MAX; bestPlaneCeo(1,3)=(0,0,0); 

            2: w = 1 - rateOutlier /length(point-list); 

            3: K= round(log(1-P)/(log(1-w3))); 
            4: while i<K do 

            5:  k pick 3 points randomly among (point-list); 

            6:  model= pts2plane(k); 

            7:  dis(point-list) = dist2plane(pl, point-list ); 

            8:  s= find(abs(dis(point-list)) < thre) 

            9:  st = Standard-deviation(s) 

          10:  if (length(s)> bestNumPoint) or  (length(s)= bestNumPoint and st < bestStd) then 

          11:   Inlier= length(s); 

          12:   bestPlaneCeo= model; bestStd = st; 

          13:  end if 

          14:  i=i+1; 

          15: end while 

 

In this Algo. 2:  “thre” - is the distance threshold of a point belong to plane model  

                          “bestNumPoint”   is the minimum number point of plane 

                          “w” - is the probability of choosing an inlier. It can be estimated before. 

                          “P” – is the probability for successful algorithm that is between 0.9 - 0.99. 
PROSAC algorithm is improved of RANSAC algorithm by processing time. It is faster RANSAC to hundred times 

[18]. Unlike with RANSAC,  its idea is as follows [18], [19]:  

- Generate all TN samples similar RANSAC. 

- Choosing Un good samples in order of decreasing quality of samples TN . 

- In each iteration, choosing sample from Un of the previous iteration. 

To testing the processing time of PROSAC, RANSAC, RANSAC variants, we performed the small testing. We tested 

to fitting plane on eleven sets of point in MICA dataset with parameters (P=0.99, thresh is the threshold for 
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determining inlier, K=100). PROSAC is faster than RANSAC, RANSAC variants (see Fig. 5a). The total of 

processing time of it is faster RANSAC for 2.364s. The inlier rate is not much lower than RANSAC (ground-truth) 

(see Fig. 5b). The normal vector of planes is similar. 

 

 

 

 

 

 

 

 

 
 

 

 
Complex scene has many planes (ThreNumPlane planes) such as table, wall, ground and other planes. Each estimation 

they had a plane. To find the interested plane, we checked the geometrical constraints in each estimation of PROSAC. If a 

plane consistent with constraints, then stop whereas next iterations. The detail presented in Algo. 2. The real, number point 

of complex scene is about 100000 to 400000 points. PROSAC algorithm need to determining minimum of plane size 

(minpoint); number of iterations N; probability for running successful algorithm P (success). In this paper, we set of them 

as follows:  

   minpoint= 10% number point of the scene. 

   K = 70, because we estimate 40% inlier. 

   P (success) = 0.99 

In this paper, we see two cases appear as follows: 

The first, no clustering between table plane and wall plane:  the region point cloud of table plane and wall plane is the 

largest data (number point). We find to it in the regions data. Supposed, it is greater than about “pc”=50% number point of 

the scene.  After that, we repeat combination fitting plane (PROSAC) and geometrical constraints for table plane detected 

satisfying the constraints. 

The second, clustering between table plane and wall plane: we repeat combination fitting plane (PROSAC) and 
geometrical constraints for table plane detected satisfying the constraints. The processing of our approach is presented in 

algorithm 2: 

 

  Algorithm 3: Combining PROSAC and geometrical constraints  

       for interested plane detection  

  Input: The point cloud  

  Output: tablePlaneCeo(3,1) 

            1: i=0; bestStd = INT_MAX; tablePlaneCeo(1,3)=(0,0,0); 

            2: p = clusterPointcloud(scene); pc=0.5*numberpoint(scene); 

            3: N= length(p); k=0.1*numberpoint(scene); 

            4: while i<N do 

            5:  pi=Regions(i);             

           6:  if (numpoint(pi)>=pc) then 

            7:     kt=false; 

            8:   while (kt==flase) do 

    9:    pf= PROSACfitPlane(pi); 

          10:    if (numberpoint(pf)>=k) and (geometricalConstraints(pf)==true) then 
          11:     kt=true; tablePlaneCeo(3,1)= pf; 

                        12:   end if 

          13:   end while 

          14:  else 

          15:   pf= PROSACfitPlane(pi); 

          16:   if (numberpoint(pf)>=k) and (geometricalConstraints(pf)==true) then 

          17:    tablePlaneCeo(3,1)= pf; 

                       18:   end if 

         19:  end if 

         20:  i=i+1; 

         21: end while  

         22: if (tablePlaneCeo(1,3)==(0,0,0)) then 

         23:  return false;   

               24: end if 

       25:  Return tablePlaneCeo; 

 

(b) (a) 
Figure 5: The tested result of the estimation plane by RANSAC, RANSAC variants; (a) processing time, (b) inlier 

rate of model estimation. 
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IV. EXPRIMENTAL RESULTS AND DISCUSSION 

A. Experimental 
Fig. 6a illustrates the experimental setup we used to evaluate the proposed approach. We were performed in the kitchen 

near the lab of MICA. We refer to this as the “MICA” dataset. We set up experiments to collect data as follows:  Kinect is 

mounted on a shelf; the angle between Kinect orientation and the vertical line of shelf is 60 degree; the table put is in the 

center of the room and in other cases near the wall; in some sequences we placed chairs next to the table it; may be the 

ttable work, table eat; the height of table and floor is about 0.8m; the high between Kinect and the table plane was about 

0.5 - 0.8 m; the distance between Shelf of mounted Kinect and about table center is about 1.5m. Some the location of 

kinect is illustrated in Fig. 6b. The environment is indoor (kitchen, our work). The Kinect captured to 5 frames / second. 

Because Kinect usually collect data with speed 15 Hz - 20 frames / second, but in MICA platform that it takes time for the 

calibration. The each height location of Kinect (0.5 – 0.8m) and the each scene, we collected the images in 5s. The images 

had been collected a resolution 640x480 pixels. Each scene is always only one table. Both the depth and RGB sensors have 

been calibrated by MICA platform. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this experiment, the number of image is about 800 images. The Fig. 7 is shown eight the scenes of experimental. 
 

 

 

 

 

 

 

 

 

 

B. Results 
In order to evaluate the table plane detection, we prepared the ground-truth table plane for evaluating of table plane 

detection as follows: From depth images to crop table image in the block, then point cloud representation and get a normal 

vector of the plane (using RANSAC algorithm), 3D center point of the plane (see Fig. 8).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

we illustrated to get  the normal vector of the plane in preparing plane ground truth in Fig. 9. 

 

 

 

Figure 8: Preparing ground-truth table plane for evaluating table plane detection 

Figure 7: Some scenes of experiment 

(a) (b) 

Figure 6: (a) setup Kinect to collect data (RGB-D images); (b) some location Kinect puts in 
the experimental for collecting data. 
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We defined a true table plane detection as follows: the angle between the normal vector of the plane detection and the 

normal vector of the ground-truth table plane less than 5 degrees and the 3D center point of ground truth belong to the 

plane detection. If the angle is more than 5 degrees or the 3D center point of ground-truth table plane do not belong to the 

plane detection, it was the false detection. Results based on two directions: the first is the rate of true detection; the second 

is the computation time. We are evaluated on three approaches:  

- The baseline approach is combined from clustering point cloud and choosing table plan is the largest plane in the scene 

and using PROSAC for fitting plane.  

- Others approaches are combining from clustering point cloud and using Least Squares, 3D Hough Transform, RANSAC, 

MLESAC, MSAC  for fitting plane and geometrical constraints of the environment. 

- Our approach, we combined from clustering point cloud and using PROSAC for fitting plane and geometrical constraints 

of the environment. 

We evaluated on 800 images of the experiment. Our system is written in the C++ language and development using the 

combination of PCL 1.7 and OpenCV 2.4.8. Out method has been tested on PC with Core i5 processor – RAM 4G. The 

results of table plane detection (precision) in Tab. 1.  
 

 

 

 

 
 

 

Table 1: The results of table plane detection (precision) on “MICA” dataset 

We are evaluated the cost  error function between plane model ground truth and plane model detected. The equation (Eq. 

4) of error function presented as follows [22] (4):    

 

Errorf = sqrt((a’- a)2 
 + (b’-b) + (c’-c))                (4) 

         

where (a,b,c) is the parameters of plane ground truth; (a’,b’,c’) is  the parameters of  plane detected. Cost error function of 

scenes in MICA dataset are shown on Fig.  10. 

 

 

 

 

 

 

 
 

 

 

Figure 9: The step get normalvector for preparing of the plane ground truth 
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In Fig. 11a illustrates the results of table plane detection in some scene. 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

In Tab. 1, the results of our approach are faster and more accurate than Least Squares, 3D Hough Transform, RANAC. 

The rate of true table plane detection is 92.6% and the processing time is 275 s equal 3 scenes / second. It is lower than the 

MLESAC, MSAC, but it is faster than them. In baseline approach, the result is 26.2% that it proves the number of scenes 

have table plane is the largest plane in the scene. 

The wrong table plane detection focus into the cases not clustering table plane and wall plane.  In this case, it fit a plane 

have points belong to both plane: wall plane, table plane (see Fig. 11b). 

IV. CONCLUSION 
In this paper, we have shown a new approach for interested plane detection from point cloud of depth images of Kinect 

sensor. We have successfully built a system to table plane detection by combining PROSAC algorithm and geometrical 

constraints of the environment. Our approach is simple and processing in real time. The results of our approach are more 

accurate than other approaches for table plane detection in complex scene and it also confirmed PROSAC is a very fast 

algorithm for estimation and fitting model. Results may be applied to localizing objects in robotic or construction visually 

impaired supporting system. The results of the experiment have shown us. 

  

Figure 11: (a) some results of table plane detection on point cloud; the points have red color on plane is belong to table plane. 

(b) the wrong table plane detection; Points have blue color belong to wrong table plane detection 

Figure 10: Cost error function of scenes in MICA dataset presented with some algorithms. They compared with 
the ground truth parameters (RANSAC). 

(a) 

(b) 
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TÓM TẮT—Phát hiện mặt phẳng là một nghiên cứu quan trọng trong cộng đồng nghiên cứu về robot, đặc biệt là 

trong các nghiên cứu xây dựng các hệ thống hỗ trợ cho người khiếm thị. Nó đã được thực hiện trong nhiều hướng tiếp cận 

như RANSAC, các biến thể của RANSAC, 3D Hough Transform, Least Squares. Nó cũng được áp dụng trong nhiều ứng 

dụng như: xây dựng lại không gian 3D, phân tích cảnh, phân đoạn các vùng dữ liệu, xác định vị trí của các đối tượng,...vv. 

Kết quả của các hướng tiếp cận trước là một hoặc nhiều mặt phẳng trong cảnh. Nhưng trong thực tế, đối với mỗi ứng 

dụng riêng có thể chỉ tập trung vào một mặt phẳng (mặt phẳng quan tâm). Trong bài báo này chúng tôi đề xuất một hướng 

tiếp cận mới cho phát hiện một mặt phẳng quan tâm trong cảnh phức tạp và xử lý thời gian thực từ đám mây điểm(point 

cloud) của ảnh độ sâu(depth) của Kinect. Nó dựa trên sự kết hợp của PROSAC(một giải thuật cho ước lượng mô hình mặt 

phẳng) và các ràng buộc hình học của môi trường. Chúng tôi có so sánh hướng tiếp cận mà chúng tôi đề xuất với một số 

hướng tiếp cận khác cho bài toán này. Các kết quả thí nghiệm cho thấy hướng tiếp cận của chúng tôi cao hơn so với các 

hướng tiếp cận truyền thống. 
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