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ABSTRACT—PIlane detection is an important research in the robotics community. Its results are utilized in many
applications such as 3D reconstruction, scene analysis and segmentation, objects localization so on. In context of an
assistive system forvisually impaired people, plane detection, or more specilized, table plane detection is a prerequisite
step for further procedures such as object localization and recognition. Although many approaches have been proposed
for the plane detection such as RANSAC, RANSAC variants, Hough Transform, Least squares. Depending on the context
of each application, selecting the apprriciate results always required further implementations. But in fact, each specific
application can only focus on one plane (interested plane). In this paper, we propose a new method for detecting an
interested plane that is table plane in complex scenes based on depth images captured by a Kinect sensor. Our approach
proposed algrothims combines PROSAC algorithm (an algorithm for estimating plane model) and geometrical constraints
of environments. We compared some approaches together. The experimental results show that the proposed method
outperforms the traditional ones.

l. INTRODUCTION

Plane detection is a fundamental problem in the field of computer vision and robotics. It is applied broadly for many
different researches. The researchers can use it for 3D reconstruction [1] from image sequences or RGB-D image, scene
analysis [2], segmentation [3] [4], etc. In context of the vision-based application supporting visually impaired people, the
plane detection is an important step. Its results can consit of a table plane in room, where locates many interested object
such as botle, cups, boxes, so on; or steps on stairs, ground planes, so on. Such results help to automatic navigating
direction and obstacle detection [5].

Currently, there are many approaches for plane detection such as RANSAC [7], Hough Transform [8], Least Square [9].
However, in computer vision, one of the most widely used methodologies for plane detection is RANSAC and its variant
[7]. This approach has been proven to successfully detect planes in 2D as well as 3D. They also required a low
computational cost. The RANSAC [7] is in each iteration step use a part points of point cloud in the estimation model
plane. It may reduce the processing time and plane extraction in point cloud have high noise. Moreover, there has been
improvement of RANSAC such as [10] PROSAC (Progressive Sample Consensus), LMEDS (Least Median of Squares),
MLESAC(Maximum Likelihood Estimation Sample and Consensus), MSAC (M-estimator SAmple and Consensus), etc.
They increase the accuracy of fitting and extraction plane model in the real time.

In a complex scene, plane detection results consit of many planes such as ground wall, table plane, etc. These planesare
surfaces of different objects such as door, cabinet, chair, etc. In [6], [11], a table plane is detected in a simple case using
RANSAC. The author assumesd that table plan is the largest planes in the scene. Such assumption is not suitable when
many planes are exisiting in a complex scene. The fact that each specific application requires theselecting the interested
plane). In context of the constructing an assistive system for visually impaired people, to help people handles objects on
the table plane the system focuses on detecting table plane. Detection of the interested table plane detection is a prerequise
step for finding objects on the table. Consequently, we handles practical conditions, where table plane is localed in the
complex scenes such as in a cafeteria, sharing-room. Such scenes are more complex than laboratory-based enviroment.

In this paper, we propose a method for the table plane detection in the complex scene by combining of a conventional
plane detection algorithm and geometrical constraints. The table plane is selected from various type of planes such as floor
plane, wall plane, table plane, others plane by utilizing geometrical constraints. Such contraints are simple and infer
context of real enviroments. The proposed method is simple and real time. The experimental results shows it is fast,
accurate and consistent for detecting table planes in realistical enviroments. Fig. 1 illustrates detection results in which the
the interested table planes are detected in the complex scenes.

Figure 1: the results of interested plane detection in the complex scene; points have
red color belong to table plane.
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1. RELATED WORK
The fitting and extracting planes from point cloud have been performed in the many researches [7], [8], [12].
In researches [7, 12], the authors model planes by four pameters (A, B, C, D). To estimate these parameters, they used a
threshold method. Points belonging the plane model are inliners, whereas, points not belonging the model are outlines.
Schnabel et al. [13] showed that RANSAC algorithm consistents with data which has much outliers or only few inliners.
To find the best parameters fitting with the data, it must be run through several iterations. At each iteration, it will be
selected randomly a set point in the data for fitting the model. 3D Hough Transform [8], the planes presented by a set point
in 3D Hough Space with three parameters (6, @, p). Each point in Hough Space corresponds with a line p (see Eq. 1) in R®.

p=Px - cos 0 sin @ + py. sin @. sin 6 + p, . COS P Q)

where P (px, Py, Pz) is a point in 3D, 0 is the angle between the normal vector at point P on xy-plane, ¢ is the angle
between the line p and xy-plane. Least Square [12], it tries to estimate all possible models for a set of data, then choose a
best model. Both Hough Transform and Least Squares algorithm used all points in the data for the estimation plane
model that have higher computational time. In Hyun et al.[14], the authors compared the processing time of 3D Hough
Transform and RANSAC for estimation plane model on the same dataset. The processing time of 3D Hough Transform is
409s, 6.74 s of RANSAC. The deviation between ground truth plane and plane detection of 3D Hough Transform is about
11mm and that approximately is 2mm of RANSAC. Currently, there is some improvement of RANSAC [15]. They are
divided into groups differently as follows: accurate group (MSAC, MLESAC), fast group (PROSAC, R-RANSAC), robust
group (MAPSAC). Each algorithm has specific advantages and disadvantages. Such MLESAC is more accurate than 5%
with RANSAC, the processing time of R-RANSAC is lower than RANSAC. [14], the authors proposed a method which
may be plane detected in real time from depth images. This method based on the normal vector of four nearest neighbor
points (up, down, left, right). Points belonging the plane model have same the normal vector. This approach is thirteen
time as fast as RANSAC on the same dataset.

1. THE PROPOSED METHOD
A. The proposed framework
In this paper, we proposed a framework for detecting an interested plane that is table plane in complex scenes based
on depth image captured by a kinect. The input data represented in 3D space by point cloud data. Algorithms using our
method combine from PROSAC and geometrical constraints. The processing shows in Fig. 2.
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Figure 2: Framework for interested plane detection

In Fig. 2, the step “interested plane extraction” is most important. The output results are the parameter (A, B, C, D)
and a set inlier point of table plane.
Interested plane detection
Step 1: Point cloud representation

In this step, the depth data is converted to 3D coordinates. 2D depth image D(x, y) is represented in 3D
coordinates in which (X, y) is spatial pixel (from RGB image) and z data corresponds of depth. To represent the data,
we use a function of PCL library (Point Cloud Library). This function combines three values (X, y, z) and parameters
of kinect from calibration data. Each point of point cloud data has 3D coordiantes (X, Y, z). It generates from using the
depth camera intrinsic [11] and projected the each pixel (xd, yd) to metric 3D space as follows the equation (2).

Z(xqa—eca) Y = Z (ya —ey)
fe fy
with fy, fy, cx and c, are focal length and principal point. Then in order reduce the size of the data, we present point cloud

data by means of a voxel grid.

Step 2: Table plane extraction

Geometrical constraints:

In [11], [16], the table plane is the largest in the scene that is only an estimation of table plane detection. Our approach
detects a plane from ground, wall, a table and other planes. The size of planes is different. We proposed some geometrical
constraints for table plane detected as follows:

X = Z = depth(z4, ya) )
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Scenario is the visually impaired people mounting a Kinect and moving on the cafeteria, sharing-room. This person wants
to find some objects on the table. Kinect orientation focuses into table center. The height between Kinect and table plane is
h. The angle between person height (straight line) and Kinect orientation is a degree. The origin (O Xk Y« z) is Kinect
center. The angle between Kinect orientation and normal vector of table plane is 90 + (90 - «) (see Fig. 3.a).

The real world is the table plane perpendicular to the wall plane and the normal vector of the table plane (N;) parallel with
the normal vector of the ground plane (N.) that consistent the Eq. 3. The angle between Kinect orientation and normal
vector of wall plane is f that is about 90 + (90 - &) <= £ < 180 degree (see Fig. 3.b) and about 180 - (90 - ) <= <180
degree (see Fig. 3.c) .8 is smallest in the case Kinect orientation perpendicular with normal vector of the wall plane (see
Fig. 3.b). Fig. 3, we show some angle constraints with a=60°.
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Figure 3: the angle constraints in for table plane detection; (a), (b), (c) are that case a=60°

(c)

Based on Kinect location, the direction of the z-axis is in table center. Direction of the x-axis is horizontal. Direction
of the y-axis is to down. The y value of the points belonging table plane (V;) is smaller than points belonging ground
plane (Vi). Two types plane are the same normal vector, but they are the different D coefficient.

Kinect

Table plane

v
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Figure 4: Constraint of location plane; it uses for classification between table plane and ground
However, the classification between table plane and wall plane is unclear in Fig. 3a, Fig. 3b. Because, the angle between
the normal vector of wall plane and z-axis is similar to the angle between the normal vector of table plane and z-axis.
Assuming, maxy is the maximum value following y-axis of point cloud data; miny is the minimum value following y-axis
of point cloud data. In complex scenes have the table plane, wall plane, ground plane. maxy belongs to the wall plane. miny
belongs to the ground plane. Should we use constraint (Eq. 3) for distinguishing between the table plane and the wall
plane.
Miny € Uy < i € Ui <maxy ¢ Uq 3)

Before performing estimates the planes in complex scenes. We used the Kd-tree [20] structure and K-
nearest neighbor algorithm for clustering the point cloud data. It is a structure for clustering unsupervised that base
the Euclidean distance between points in cloud point. They applied for clustering the point cloud data that presented
the brief [21] in Algo.1.
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Algorithml: Kd-Tree structure in K-neast neighbor for clustering point cloud

Input: Points of point cloud (P)
Output: Regions

1. Create a Kd-tree representation for the input point cloud dataset P;

2:  Set up an empty list of clusters C, and a queue of the points that need to be checked Q;

3. For every point p; € P, perform the following steps:

4:

5: Add p; ¢ P to queue Q

6: For every point pi ¢ Q do

7

8: Search for the set P'y of point neighbors of P; in a sphere with radius r < threshD

9: For every neighbor p'y € P, check if the point has already been processed, and if not add it to Q;
10: }
11: When the list of all points in Q has been processed, add Q to the list of clusters C, and reset Q to

an empty list;

12: The algorithm terminates when all points p;i ¢ P have been processed and are now part of the list

of point clusters C;
13:  Regions (k) = C;
14:  }
where threshD is the threshold radius for searching neighbor points.

Extraction plane:
Interested plane extraction is the most important step in our approach. It is combining of PROSAC and geometrical
constraints. These geometrical constraints presented in the above section. In this step, we represented to combining detail
of PROSAC and geometrical constraints for table plane detection. PROSAC is a RANSAC [17] variant that presented the
brief in Algo. 2.

Algorithm 2: RANSAC for plane detection

Input: The point cloud
Output: bestPlaneCeo(1,3)
1: i=0; bestStd = INT_MAX; bestPlaneCeo(1,3)=(0,0,0);
2: w =1 - rateOutlier /length(point-list);
3: K= round(log(1-P)/(log(1-w?)));
4: while i<K do

5: k pick 3 points randomly among (point-list);
6: model= pts2plane(k);
7: dis(point-list) = dist2plane(pl, point-list );
8: s= find(abs(dis(point-list)) < thre)
9: st = Standard-deviation(s)
10: if (Ilength(s)> bestNumPoint) or (length(s)= bestNumPoint and st < bestStd) then
11: Inlier= length(s);
12: bestPlaneCeo= model; bestStd = st;
13: end if
14: i=i+1;
15: end while

In this Algo. 2: “thre” - is the distance threshold of a point belong to plane model
“bestNumPoint” is the minimum number point of plane
“w” - is the probability of choosing an inlier. It can be estimated before.
“P” —is the probability for successful algorithm that is between 0.9 - 0.99.
PROSAC algorithm is improved of RANSAC algorithm by processing time. It is faster RANSAC to hundred times
[18]. Unlike with RANSAC, its idea is as follows [18], [19]:
- Generate all Ty samples similar RANSAC.
- Choosing U, good samples in order of decreasing quality of samples Ty .
- Ineach iteration, choosing sample from U, of the previous iteration.
To testing the processing time of PROSAC, RANSAC, RANSAC variants, we performed the small testing. We tested
to fitting plane on eleven sets of point in MICA dataset with parameters (P=0.99, thresh is the threshold for
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determining inlier, K=100). PROSAC is faster than RANSAC, RANSAC variants (see Fig. 5a). The total of
processing time of it is faster RANSAC for 2.364s. The inlier rate is not much lower than RANSAC (ground-truth)
(see Fig. 5b). The normal vector of planes is similar.
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Figure 5: The tested result of the estimation plane by RANSAC, RANSAC variants; (a) processing time, (b) inlier
rate of model estimation.

Complex scene has many planes (ThreNumPlane planes) such as table, wall, ground and other planes. Each estimation
they had a plane. To find the interested plane, we checked the geometrical constraints in each estimation of PROSAC. If a
plane consistent with constraints, then stop whereas next iterations. The detail presented in Algo. 2. The real, number point
of complex scene is about 100000 to 400000 points. PROSAC algorithm need to determining minimum of plane size
(minpoint); number of iterations N; probability for running successful algorithm P (success). In this paper, we set of them
as follows:

minpoint= 10% number point of the scene.

K =70, because we estimate 40% inlier.

P (success) = 0.99
In this paper, we see two cases appear as follows:
The first, no clustering between table plane and wall plane: the region point cloud of table plane and wall plane is the
largest data (number point). We find to it in the regions data. Supposed, it is greater than about “pc’=50% number point of
the scene. After that, we repeat combination fitting plane (PROSAC) and geometrical constraints for table plane detected
satisfying the constraints.
The second, clustering between table plane and wall plane: we repeat combination fitting plane (PROSAC) and
geometrical constraints for table plane detected satisfying the constraints. The processing of our approach is presented in
algorithm 2:

Algorithm 3: Combining PROSAC and geometrical constraints
for interested plane detection
Input: The point cloud
Output: tablePlaneCeo(3,1)
1: i=0; bestStd = INT_MAX; tablePlaneCeo(1,3)=(0,0,0);
2: p = clusterPointcloud(scene); pc=0.5*numberpoint(scene);
3: N= length(p); k=0.1*numberpoint(scene);

4: while i<N do
5 pi=Regions(i);
6 if (numpoint(pi)>=pc) then
7 kt=false;
8: while (kt==flase) do
9: pf= PROSACTitPlane(pi);
10: if (numberpoint(pf)>=k) and (geometricalConstraints(pf)==true) then
11: kt=true; tablePlaneCeo(3,1)= pf;
12: end if
13: end while
14; else
15: pf= PROSACTitPlane(pi);
16: if (numberpoint(pf)>=k) and (geometricalConstraints(pf)==true) then
17: tablePlaneCeo(3,1)= pf;
18: end if
19: end if
20: i=i+1;
21: end while
22: if (tablePlaneCeo(1,3)==(0,0,0)) then
23: return false;
24: end if

25: Return tablePlaneCeo;
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IV. EXPRIMENTAL RESULTS AND DISCUSSION
A. Experimental

Fig. 6a illustrates the experimental setup we used to evaluate the proposed approach. We were performed in the kitchen
near the lab of MICA. We refer to this as the “MICA” dataset. We set up experiments to collect data as follows: Kinect is
mounted on a shelf; the angle between Kinect orientation and the vertical line of shelf is 60 degree; the table put is in the
center of the room and in other cases near the wall; in some sequences we placed chairs next to the table it; may be the
ttable work, table eat; the height of table and floor is about 0.8m; the high between Kinect and the table plane was about
0.5 - 0.8 m; the distance between Shelf of mounted Kinect and about table center is about 1.5m. Some the location of
kinect is illustrated in Fig. 6b. The environment is indoor (kitchen, our work). The Kinect captured to 5 frames / second.
Because Kinect usually collect data with speed 15 Hz - 20 frames / second, but in MICA platform that it takes time for the
calibration. The each height location of Kinect (0.5 — 0.8m) and the each scene, we collected the images in 5s. The images
had been collected a resolution 640x480 pixels. Each scene is always only one table. Both the depth and RGB sensors have
been calibrated by MICA platform.

" Normal vector of

) table plane
wall
table
2 1 =
/ |
y -2 | /
Normal vector of : .
floor plane Kinect
Normal vector of

Floor (a) wall plane (b)

Figure 6: (a) setup Kinect to collect data (RGB-D images); (b) some location Kinect puts in
the experimental for collecting data.

In this experiment, the number of image is about 800 images. The Fig. 7 is shown eight the scenes of experimental.

- L LG ! — O

Figure 7: Some scenes of experiment

B. Results

In order to evaluate the table plane detection, we prepared the ground-truth table plane for evaluating of table plane
detection as follows: From depth images to crop table image in the block, then point cloud representation and get a normal
vector of the plane (using RANSAC algorithm), 3D center point of the plane (see Fig. 8).

Normal
Vector

Depth image Crop plane image Point cloud

Figure 8: Preparing ground-truth table plane for evaluating table plane detection

we illustrated to get the normal vector of the plane in preparing plane ground truth in Fig. 9.
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Normal Vector: <-0.077, 0.939, 0.334>

Figure 9: The step get normalvector for preparing of the plane ground truth

We defined a true table plane detection as follows: the angle between the normal vector of the plane detection and the

normal vector of the ground-truth table plane less than 5 degrees and the 3D center point of ground truth belong to the

plane detection. If the angle is more than 5 degrees or the 3D center point of ground-truth table plane do not belong to the

plane detection, it was the false detection. Results based on two directions: the first is the rate of true detection; the second

is the computation time. We are evaluated on three approaches:

- The baseline approach is combined from clustering point cloud and choosing table plan is the largest plane in the scene
and using PROSAC for fitting plane.

- Others approaches are combining from clustering point cloud and using Least Squares, 3D Hough Transform, RANSAC,
MLESAC, MSAC for fitting plane and geometrical constraints of the environment.

- Our approach, we combined from clustering point cloud and using PROSAC for fitting plane and geometrical constraints
of the environment.

We evaluated on 800 images of the experiment. Our system is written in the C++ language and development using the

combination of PCL 1.7 and OpenCV 2.4.8. Out method has been tested on PC with Core i5 processor — RAM 4G. The

results of table plane detection (precision) in Tab. 1.

Approach Algorithm for fitting plane True table plane detector (%o) Processing time(s)
Baseline PROSAC - Code C++ 26.2% 248 s
Least Square[12] -Code C++ 89.3% 633s
3D Hough Transform[8] - Code 1o
Others MatLab 88.4% 1021 s
approaches RANSAC][T] -Code C++ 90.7% 376s
MLESACI10] -Code C++ 92.9% 308 s
MSAC[10] -Code C++ 93.1% 365s
Our approach | PROSAC[10] -Code C++ 92.6% 275 s

Table 1: The results of table plane detection (precision) on “MICA” dataset

We are evaluated the cost error function between plane model ground truth and plane model detected. The equation (Eqg.
4) of error function presented as follows [22] (4):

Errors = sgrt((a’- a)> + (b’-b) + (c’-C)) 4)

where (a,b,c) is the parameters of plane ground truth; (a’,b’,c’) is the parameters of plane detected. Cost error function of
scenes in MICA dataset are shown on Fig. 10.
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Figure 10: Cost error function of scenes in MICA dataset presented with some algorithms. They compared with
the ground truth parameters (RANSAC).

In Fig. 11a illustrates the results of table plane detection in some scene.

; “m””

Depth Point cloud Plane detection

(b)

Figure 11: (a) some results of table plane detection on point cloud; the points have red color on plane is belong to table plane.
(b) the wrong table plane detection; Points have blue color belong to wrong table plane detection

In Tab. 1, the results of our approach are faster and more accurate than Least Squares, 3D Hough Transform, RANAC.
The rate of true table plane detection is 92.6% and the processing time is 275 s equal 3 scenes / second. It is lower than the
MLESAC, MSAC, but it is faster than them. In baseline approach, the result is 26.2% that it proves the number of scenes
have table plane is the largest plane in the scene.
The wrong table plane detection focus into the cases not clustering table plane and wall plane. In this case, it fit a plane
have points belong to both plane: wall plane, table plane (see Fig. 11b).

V. CONCLUSION
In this paper, we have shown a new approach for interested plane detection from point cloud of depth images of Kinect
sensor. We have successfully built a system to table plane detection by combining PROSAC algorithm and geometrical
constraints of the environment. Our approach is simple and processing in real time. The results of our approach are more
accurate than other approaches for table plane detection in complex scene and it also confirmed PROSAC is a very fast
algorithm for estimation and fitting model. Results may be applied to localizing objects in robotic or construction visually
impaired supporting system. The results of the experiment have shown us.
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PO SAU
Lé Vin Hung"2 Vii Hai?, Nguyén Thi Thiy?, L& Thi Lan2, Trin Thi Thanh Hai?

1 Khoa cong ngh¢ thong tin, Trudng Cao ding Thong ké
2 Vién quéc té MICA, Truong Pai hoc Bach khoa Ha Noi
3 Khoa cong nghé thong tin, Hoc vién Nong nghiép Viét Nam
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TOM TAT—Phat hién mgt phang 1a mét nghién cizu quan trong trong céng dong nghién cizu vé robot, dac biét 1a

trong cac nghién cizu xay ding cac hé thang hé tror cho nguoi khiém thi. Né da duwoc thuc hién trong nhiéu hurong tiép can
nhw RANSAC, cdc bién thé ciia RANSAC, 3D Hough Transform, Least Squares. N6 ciing dwoc ap dung trong nhiéu Ling
dung nhu: xdy dung lai khong gian 3D, phan tich canh, phdn dogn cac vung di lidu, xdc dinh vi tri cua cdc doi tuong,...
Két qua cua cac ‘hueng tiép cdn truéc 1a mét hoge nhiéu mat phang trong canh. Nhung trong thuc té, doi véi moi ung
dung riéng co thé chi tdp trung vao mét met phang (mdt phang quan tam). Trong bai bdo nay chiing téi dé xuat mét hwong
tiép can mai cho phét hién mgt mat phang quan tam trong canh phirc tap va xir ly thoi gian thuc tir dam may diém(point
cloud) cua anh do sau(depth) cua Kinect. N6 dya trén sy két hop cua PROSAC(m¢t giai thudt cho udc lwong mo hinh mat
phang) va cac rang bugc hinh hoc ciia méi truong. Chung toi c6 so sdnh huong tlep cdn ma chiing t6i dé xudt véi mgt so
huéng tiép can khac cho bai toan nay. Cac két qud thi nghiém cho thdy huwéng tiép cdan cia chiing téi cao hon so véi cac
hwéng tiép cdn truyén thong.
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