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a b s t r a c t

This paper presents a robust and real-time hand posture recognition system. To obtain this, key elements
of the proposed system contain an user-guide scheme and a kernel-based hand posture representation.
We firstly describe a three-stage scheme to train an end-user. This scheme aims to adapt environmental
conditions (e.g., background images, distance from device to hand/human body) as well as to learn
appearance-based features such as hand-skin color. Thanks to the proposed user-guide scheme, we could
precisely estimate heuristic parameters which play an important role for detecting and segmenting hand
regions. Based on the segmented hand regions, we utilize a kernel-based hand representation in which
three levels of feature are extracted. Whereas pixel-level and patch-level are conventional extractions,
we construct image-level which presents a hand pyramid structure. These representations contribute to
a Multi-class support vector machine classifier. We evaluate the proposed system in term of the learning
time versus the robustness and real time performances. Averagely, the proposed system requires 14 s in
advanced to guide an end-user. However, the hand posture recognition rate obtains 91.2% accuracy.
Performance of the proposed system is comparable with state-of-the-art methods (e.g. Pisharady et al.,
2012) but it is a real time system. To recognize a posture, its computational cost is only 0.15 s. This is
significantly faster than works in Pisharady et al. (2012), which required approximately 2 min. The
proposed methods therefore are feasible to embed into smart devices, particularly, consumer electronics
in domain of home-automation such as televisions, game consoles, or lighting systems.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Communications between human and computer (or recently,
smart devices) become more and more natural and intuitive
interactions. Human–Computer Interaction (HCI) therefore has
been a wide field of research in the last thirty years, which has led
to uncountable algorithms and methods (Zabulis et al., 2009;
Rautaray and Agrawal, 2012). However, utilizing hand postures as
a natural interaction is still a very challenging problem due to the
complexity of hand shapes, and high computational costs of the
vision algorithms. On one hand, robustness of the relevant systems
are suffered from various hand postures under different lighting
conditions and cluttered backgrounds. On the other hand, in order
to ensure the natural and intuitive feedbacks, the vision-based
(H.-G. Doan),
ica.edu.vn (H. Vu),
hand posture recognition algorithms should process video stream
in real time. As a result, many current approaches are either too
limited speed, accuracy and robustness or demand too many
prerequisites such as markers, clean backgrounds and so on. Dif-
ferent from above concerned approaches, this paper tackles a
trade-off between robustness and real-time performance with a
cost of the user-dependence. This cost pays for training end-users
so that such critical performances are achievable. It is noticed that
while most of the hand posture recognition techniques aim at an
user-independence system. In other words, they can adapt differ-
ent users rather than a specific user. In this paper, we show that a
hand posture recognition system is able to be an user-dependence
one with a reasonable user-guide scheme.

We take into account designing an efficient user-guide scheme
so that it requires minimal training time and user intentions. The
proposed user-guide scheme consists of three stages. They are to
answer questions: (1) how is the current background scene?
(2) How are appearances (e.g., color) of the hand's skin? (3) How
far from user's hand to the sensor? Thanks to this scheme, the
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heuristic parameters in the hand detection and segmentation
procedures are adaptively selected. For instance, a depth image
from Kinect sensor gives not only distance from hand to Kinect,
but the distance to other objects in a certain scene. By using the
result of (3), the hand-distance parameters can be learnt quickly.
The candidates of the hand region therefore can be separated in
the depth image using such parameters. Similarly, we prune the
hand candidates through skin colors learnt in (2). Consequently,
we obtain a high accuracy of the segmented hand on a compli-
cated background.

For the recognition task, different from robust existing hand
posture recognition algorithms, e.g., Pisharady et al., 2012, we pay
special attentions of representing structure of the hand regions.
The representations of a posture consist of three levels: pixel-level,
patch-level, and hand-level. This goal is available because the hand
region is separated on a complicated background. Such repre-
sentations fully describe the composite property of hand postures.
Whereas the relevant works manage characteristics of the hand
postures based on a stack of various features such as saliency,
texture, shape, colors (e.g., a Bayesian-nets in Pisharady et al.,
2012; Zabulis et al., 2009). In this study, we deploy a multi-class
SVM classifier which utilizes compactness of the proposed hand
representations. The proposed method achieves a very promising
recognition rate and a real time processing in experimental eva-
luations. In particular, the recognition rate is significantly
increased when hand regions are separated from the complicated
background. Cost of the proposed system is that the user-guide
scheme must be activated whenever an end-user initiates con-
trolling a device. It consumes averagely 15 s in advance for each
end-user. This is an acceptable training cost for end-user. Conse-
quently, the proposed system is feasible to deploy practical
applications.

The rest of paper is organized as follows: Section 2 briefly
surveys related works. Section 3 describes the proposed user-
guide scheme. The experimental results are shown in Section 4.
Finally, Section 5 concludes and suggests further research
directions.
2. Related work

Hand posture recognition has been mentioned since thirty
years ago. Nowadays, it remains an active topic in fields of the
computer vision because of its wide range of practical applications,
more specifically, sign hand language, lie detection, game,
e-learning, and human–robot interaction. Research on vision
based hand posture recognition initially employed video sequen-
ces provided by conventional RGB camera. With the development
of new and low-cost depth sensors, new opportunities for posture
recognition have emerged. Microsoft Xbox-Kinect is a successful
commercial product that provides both RGB and depth data for
recognizing hand postures/gestures to control game consoles
(http://www.microsoft.com/en-us/kinectforwindows). Many tech-
nology companies launch smart-devices using the Kinect (http://
www.microsoft.com/en-us/kinectforwindows) or like-Kinect sen-
sors (e.g., Xtion PRO LIVE – ASUS, softKinect). For instance, Sam-
sung smart-TV manipulates TV-functions using dynamic hand
gestures. Omron introduces the smart-TV integrated facial and
hand recognition. PointGrab proposed an unique solution based on
shape and motion recognition including gesture, face, and user
behavior analytic (Company, 2013). From view point of the specific
applications of smart homes which utilize computer vision based
techniques, readers can refer survey (De Silvaa et al., 2012).
Increasingly, in-air gesture recognition is being incorporated into
consumer electronics and mobile devices like WiSee system (Qifan
et al., 2013). WiSee focuses on gesture recognition and shows how
to extract gesture information from wireless transmissions.

In the literature, there are uncountable solutions for a vision-
based hand posture recognition system. Readers can refer good
surveys such as Zabulis et al. (2009), Rautaray and Agrawal (2012),
and Erol et al. (2007), for technical details. Roughly speaking, the
vision-based hand posture recognition techniques consist of two
main phases: hand detection and posture recognition (Zabulis
et al., 2009; Rautaray and Agrawal, 2012; Erol et al., 2007). In order
to achieve high performance of the hand detection, the relevant
works often customize or combine multiple features such as color,
edge, shape, motion of hand (e.g., Mittal et al., 2011; Chen et al.,
2003). However, such combination schemes consume a high
computational time, e.g., Mittal et al. (2011) require 2 min to
detect hands in a photo. To speed up the detection as well as to
avoid illumination and skin color changing, Ren et al. (2011, 2013)
used depth data captured from Kinect sensor with two main
assumptions: the user needs to make sure that the hand is the
front-most object facing the sensor; the user needs to wear a black
belt on the gesturing hand's wrist. They detect hands by thresh-
olding the depth map to determine hand regions then apply
RANSAC to locate the position of black belt in order to precisely
localize and segment the hand region. Following the same idea,
Yang (2015) proposed to detect hand from human skeleton. They
then refine the hand region by thresholding the depth data and
black wristband detection. Obviously, the current approaches favor
the use of depth data and only use color as complementary.

To achieve an acceptable recognition rate, classifiers or statis-
tical models of hand postures always require sophisticated algo-
rithms. For instance, to build a Bayesian network for recognizing
hand postures, Pisharady et al. (2012) construct multiple layers of
the texture, color, shape of the hand; or in order to extract pre-
cisely hand contours, Zabulis et al. (2009) need four layers pro-
cessing. Obviously, addressing such issues always needs to com-
pute intensively and thus makes current hand posture recognition
systems fragile and unstable. Recent works such as Ionescu et al.
(2007) and Bergh et al. (2009) utilize depth information to cor-
rectly extract hand regions. Bergh and Van-Gool (2011) extracted
skeleton of hands and applied Hidden Markov Models for classi-
fying various hand gestures. Park et al. (2012) extracted blob of
hand for tracking using both Time-of-Flight and RGB camera.
Doliotis et al. (2012) introduced a method for the 3D hand pose
and hand configuration. Ren et al. (2013) proposed to represent
hand shape by normalized time-series. Then, template matching
technique was used for the recognition procedures. In such works,
a large database of hand is prepared in advanced.

As mentioned above, our study is motivated by a trade-off
between user-dependence and critical performances of the sys-
tem. There are two main points different from our study and
relevant works:

� User-dependence: Some research on vision-based hand pos-
tures/gestures recognition or tracking need the help of markers
or colored gloves (Joslin et al., 2005; Keskin et al., 2003; Lam-
berti and Camastra, 2011). A full list of the glove-based applica-
tions could be referred in Dipietro et al. (2008). However, in this
study, without any makers has been used. We design an user-
guide scheme so that the proposed system can learn current
contexts and environmental conditions such as how far from an
end-user to device; or how is the current backgrounds. The
proposed scheme is also different from learning phases which
appear in recognition algorithms. Such learning approaches are
to design intelligent machines so that the target systems can
adapt various goals such as detecting car (Nguyen and Nguyen,
2008), recognizing human, or various type of objects (Viola and
Jones, 2001; Park and Choi, 1996). In contrast, our scheme trains
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an end-user in a passive way. Such training scheme tends to be
simple enough for end-user, low costs, and minimal user-
intentions. To save training time, further extension such as
storing profile of each end-user is available to deploy.

� The hand posture recognition algorithms: We have proposed a
novel method based on kernel descriptor for hand posture
recognition from RGB data. The original idea comes from the
works presented in Bo and Sminchisescu (2009). However, we
improved kernel descriptors to be more robust to scaling,
rotation, and hand structures. In this paper, we evaluate the
proposed method on the segmented hand regions. It confirms
our observations that by separating correctly hand regions from
a complicated background, a classifier based on kernel descrip-
tors is able to increase significantly accuracy of the
recognition rate.
3. Proposed approach

3.1. Assumptions and proposed framework

3.1.1. Assumptions
Before describing the proposed approach, we present main

assumptions on that our work replies:

� To control smart device, the Kinect sensor is used to capture
both depth and color information for hand gesture recognition.
The Kinect sensor is mounted on a fixed rack or a tripod. An
end-user stands in a valid range of depth feature (e.g., 0.5–4 m
for the Kinect sensor (http://www.microsoft.com/en-us/
kinectforwindows)).

� An end-user controls devices by raising his/her hand in front of
the body and he/she stands at a fixed position during control-
ling device.

The first assumption is reasonable in real practical application
because position of a device such as a television or a game console
usually is fixed. The second assumption is acceptable because of
habits of end-users when they control a device.

3.1.2. Proposed framework
The proposed frameworks consists of two phases: (i) training

user; (ii) hand detection and recognition. Both phases are realized
at runtime, one after the other. Training phase aims to learn
parameters (background model, distance from user hand to Kinect,
skin color) served for hand detection and recognition.

By using a fixed Kinect sensor (http://www.microsoft.com/en-
us/kinectforwindows), a RGB image I and a depth data D are
concurrently collected. The proposed flow-work for recognizing
hand postures from a couple of images (I,D) consists of a series of
the cascaded steps, as shown in Fig. 1(a). Main steps contain
Fig. 1. The proposed framework for hand postures
detection, segmentation and recognition. They are briefly
explained below:

� Pre-processing: Because I and D images are taken by a Kinect
sensor that are not measured by the same coordinates. A pre-
processing is required in order to calibrate them. In this work,
we utilize calibration method proposed by Herrera et al. (2012).

� Body detection: As Kinect sensor and environment are fixed,
human body can be detected using background subtraction
technique. To avoid illumination changes, we use depth instead
of RGB data. Body regions Bd then are extracted as follows:

Bd ¼DjDiff ðD;BGÞ4Threshbody ð1Þ

where Diff is subtraction operator, BG is background model.
Learning parameters of BG is presented in Section 3.2.

� Detecting hand candidates: Replying on the assumption that
users usually toward their hand near camera than body, hand
candidates Hd could be detected from body regions Bd using
distance based thresholding technique.

Hd ¼ Bd j Bd oThreshhand ð2Þ

Determination of Threshhand value is explained in Section 3.3.
� Pruning hand candidates: Hand candidates Hd often consist of

contaminated regions. We then apply skin color constraint to
deal with this issue. Among many candidates of Hd, we keep
only ones satisfying skin distribution.

Hn ¼ I jHd ;Ωc
ð3Þ

Learning parameters of skin color model Ωc is presented in
Section 3.4. Then we do pruning Hn to obtain fully the hand
region.

� Recognizing hand postures: The pruning region of Hn is input of
the hand representation into a classifier algorithm. Detail is
presented in Section 3.6.

The relation between an input image ðI;DÞ;Bd;Hd;H
n and a set

of skin-color pixels S is illustrated by Venn diagram, as in Fig. 2.
Intuitively, above flow-work is a common solution (e.g., similar

to a previous work (Park et al., 2012)). The major advantages are
that it requires lowest computational time due to utilizing simple
algorithms for detecting and segmenting the hand regions. How-
ever, this flow-work also requires many heuristic parameters such
as background model, distance from human to Kinect, skin color
model parameters. These parameters are usually pre-determined
in the common approaches (Park et al., 2012). Contrary that work,
in this study, we propose a three-stage learning scheme to adap-
tively select these heuristic parameters for each end-user. Fig. 1
(b) shows the associated stages to select optimal corresponding
parameters in Eqs. (1)–(3).
recognition using depth and color information.
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3.2. Estimating parameters of background model for body detection

Because sensor and environment are fixed, we could detect
human region using background subtraction techniques. Both
depth and RGB data can be used for the background subtraction.
However, we use depth data because it is less sensitive to illumi-
nation changes. Among numerous techniques of the background
subtractions, we adopt Gaussian Mixture Model (GMM) (Stauffer
and Grimson, 1999) because this technique has been shown to be
the best suitable for our system.

Because of stability of the depth feature, our background model
contains only one Gaussian. Given a depth sequence including n
frames, an observation of a pixel p along temporal dimension is
denoted by sp ¼ ½D1;p;D2;p;…;Dn;p� with a standard deviation
σp ¼ stdðspÞ. The background model of pixel p is represented by
BGp ¼ ðμp;ηp;σpÞ and computed as follows:

� Noise model ηp:

ηp ¼
0 if σpoτ
255 otherwise

�
ð4Þ

� Mean value μp:

μp ¼

Pn
t ¼ 1 Dt;p

n
if σpoτPk

t ¼ 1 Dt;p jDt;po i:d:v
k

otherwise

8>>><
>>>:

ð5Þ

where k is the number of observations from sp having depth value
smaller than a i:d:v (invalid depth value – or a white pixel on
depth data)
egamihtpeDegamiBGR

Fig. 3. Results of hand

Fig. 2. The Venn diagram representing the relationship between the pixel sets (I,
D), Bd, Hd, S and Hn.
According to (5) and (4), the parameter τ aims to evaluate how
a signal sp is stable. The parameters ðμp;ηp;σpÞ are learnt for every
pixel of a depth frame. Utilizing results of the background model
μp and ηp, we firstly do denoising procedure on depth image that
is captured from the Kinect sensor. At each pixel p, the denoised
depth value D0

p is defined as:

D0
p ¼

μp if ðηp ¼ 255Þ & ðDp is i:d:vÞ
Dp otherwise

(
ð6Þ

The body region is then segmented from D0
p. A pixel p belongs

to a body region when the condition (7) below is ensured:

Bd;p ¼D0
p jD0

p �μp 40 ð7Þ

Fig. 3(a–c) shows results of the background subtraction using
(7). Given a region of human body (as shown in Fig. 3(c)), we
continuously extract candidates of the hand.

3.3. Estimating the distance from hand to the Kinect sensor for
extracting hand candidates

As denoted in the second assumption, hand of end-user is
raised in front of the body during the controlling. Candidates of
the hand can be extracted from the body regions Bd by evaluating
the distances features, as shown in (2). Threshhand deciding hand
regions from Bd is learnt by following procedure.

Firstly, we build a histogram of depth data of the detected body
regions Bd. Intuitively, there are two local peaks in this histogram.
One peak covers a range from the Kinect sensor to hand, and
another peak represents depth data from the Kinect sensor to
other body parts. Two peaks are separated by Threshhand which an
end-user is asked to move his/her hand in few times. This trick
elicits hand regions in consecutive frames because area of the
hand would have to be strongly fluctuated. The moving parts are
calculated using differences between consecutive depth frames
Dt�2;Dt�1;Dt by:

Dt�2;t�1 ¼Dt�1�Dt�2

Dt�1;t ¼Dt�Dt�1

Dhand ¼Dt;t�1 \ Dt�2;t�1

8><
>: ð8Þ

Fig. 4 illustrates how to detect the moving parts from three
consecutive frames with fixed position of an end-user. Fig. 4
(d) shows differences of depth between frames Fig. 4(a) and Fig. 4
(b), whereas moving parts between Fig. 4(b) and (c) are shown in
Fig. 4(e). An intersection operator and following by a binary
threshold one give hand regions, as shown in Fig. 4(f).

Next, given hand regions Hd, we compute depth histogram of
the Hd. Fig. 4(g) shows a depth histogram of the hand regions in
left panel. Obviously, the parameter Threshhand is identified. By
using Threshhand, an intersection histogram operator is applied to
Bd;D to eliminate body parts using (2).
dnahfosetadidnaCnoitcartxeydoB

region detection.



Fig. 4. Result of the learning distance parameter. (a–c) Three consecutive frames. (d) Results of subtracting two first frames. (e) Results of the subtracting two next frames.
(f) Binary thresholding operator. (g) A range of hand (left) and of body (right) on the depth histogram.
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Fig. 5. Result of the training skin color model. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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3.4. Estimating skin color parameters for pruning hand regions

The hand detection results as shown in Fig. 3(d) often consist
of contaminated regions. They come from objects having the same
distance as hand to Kinect sensor. Moreover, because depth data
has low resolution, the extracted hand regions do not precisely cover
the whole area of hand, particularly at boundary of fingers. We pro-
pose to use the color distribution of hand skin to handle these

issues.
There are many approaches that utilize color features to seg-
ment hand regions (e.g., Jones and Rehg, 1999; Pisharady et al.,
2012). Our works are inspired from Jones and Rehg (1999) for
learning a model of hand skin color. According to Jones and Rehg
(1999), a skin model is characterized by Ωc ¼ ðμskin; δskinÞ where
μskin and δskin are mean and covariance of color vector ½R;G;B�. In
order to estimate (μskin, δskin), we design a learning procedure as
below. The main idea is to determine a hand region where skin
color must not be confused with other colors.
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Firstly, the end-user is required to raise his/her hand so that the
hand is located approximately in a pre-determined rectangle box
(red box as seen in Fig. 5(a)–(c)). Then the center region (marked
Fig. 7. The framework of the hand postures recognition.
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Fig. 8. Construction of image-level feature concatenating feature vectors of cells in
layers of hand pyramid structure.
in yellow box in Fig. 5(a)–(c)), considered as containing only hand
skin colors, will be extracted to compute skin model parameters.

Given the extracted region, feature vectors ½R;G;B� of all pixels
are transformed to HSV color space. We then apply a skin map as
defined in Pisharady et al. (2012):

SskinðtÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHt�HS0Þ2þ

HSmax�HSmin

SSmax�SSmin

� �2

ðSt�SS0Þ2
s

ð9Þ

where Ht and St are values of Hue and Saturation channel at frame t,
respectively. Other parameters are set by default as in Pisharady et al.
(2012) (HS0 ¼ 0:1073; SS0 ¼ 0:3515;HSmax ¼ 0:1892;HSmin ¼ 0:0122;
SSmax ¼ 0:6250; SSmin ¼ 0:0558Þ:

As mentioned previously, in order to characterize as precise as
possible skin model, the extracted region must contains only skin
color. To this end, we ask the user to keep the hand at a fix position
with open palm posture during a certain time. We then measure
the stability of skin distribution and stop the training when no
change appears.

The stability of skin distribution is measured by normal cross
correlation of two histograms computed on the extracted region at
two contiguous frames:

ϵt ¼
P

iðSt�1ðiÞ�St�1ÞðStðiÞ�StÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðSt�1ðiÞ�St�1Þ2 �

P
iðStðiÞ�StÞ2

q ð10Þ

Let Δt ¼ jϵt�ϵt�1 j . Fig. 5(d) shows variation of difference
accumulation 1

N

PN
t ¼ 1 Δt from frame 1 to N. We could see that at

the beginning, this value increases significantly corresponding to
the strong movement of hand raising to the pre-defined position.
Until a certain time, this value oscillates around a point. That
means the distribution of hand skin becomes stable and we could
stop the training.

Fig. 5 (d) shows that the training procedure is converged after
35 frames. The samples pixels of the center regions from frame#1
me and represents seven hand postures for preparing the posture dataset.



Table 1
The required time to learning parameters of the background model.

Subject ID 1 2 3 4 5 6 7 8 9 10

Time (s) 3.701 3.594 3.526 3.605 3.448 3.590 3.460 3.508 3.417 3.626
Avg.7std 3.54770.086 s

Table 2
The required time to learn parameters of the hand-skin color model.

Subject ID 1 2 3 4 5 6 7 8 9 10

P
Frames 36 24 21 23 31 28 25 20 24 30

Time (s) 11.09 7.39 6.47 7.09 9.55 8.63 7.7 6.16 7.39 9.24
Avg.7std 8.0771.54 s

Table 3
The required time to learn the hand to Kinect distance.

Subject ID 1 2 3 4 5 6 7 8 9 10

P
Frames 32 37 35 40 32 38 36 28 34 30

Time (s) 2.4 2.8 2.7 3.0 2.5 2.9 2.7 2.1 2.6 2.3
Avg.7std 2.6 70.27 s
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to frame#N are collected. Parameters ðμskin; δskinÞ are calculated
from such sample data.

3.5. Hand detection

Once all needed parameters have been determined, we could
move to the second phase of hand detection and posture recog-
nition for controlling smart devices. At this time, an user starts to
raise his/her hand and performs a hand posture. The system will
firstly detect human body using background subtraction with
background model that has been learnt previously. Then hand
candidates are extracted using distance threshold. As mentioned
above, these regions often are contaminated (see Fig. 6(a)). We
then apply skin color constraint to remove false alarms and
pruning hand regions for a better segmentation.

Given a candidate of hand, we determine its bounding box Hi

(as marked in red in Fig. 6(a)) and take a ROIi (Region of Interest) at
center of Hi (as marked in yellow in Fig. 6(a)) that is taken by a
certain scale δ41: ROIi ¼Hi=δ. We utilize the skin color model
that we have learnt to verify if that it is true hand region or not. A
Mahalanobis distance on [R,G,B] data between ROIi region and skin
model (μskin; δskin) is calculated. If the number of pixels whose
Mahalanobis distances are large enough in comparison with total
number of pixels in the ROIi, the candidate is decided as a true
detection.

For pruning the segmentation results, we create a larger region
than original Hi by Hn ¼Hi � δ (as marked in the light-blue box in
Fig. 6(a)) on RGB image. Then a Mahalanobis distance between Hn

and skin model is calculated in order to extract fully hand skin
pixels Fig. 6(b). Obviously, hand pixels were updated from original
true hand shown in Fig. 6(a). Efficiency of this procedure is shown
in Fig. 6(c), in which a true hand Hnn region is extracted.

3.6. Hand posture recognition

We utilize a hand representation based on kernels to recognize
hand postures. The detail of this method can be found in Nguyen
et al. (2015). However, to make this paper more self-contained and
to assure its continuity, we will briefly review this method as
follows. The framework of the hand posture recognition using
kernels is presented in Fig. 7. The framework consists of two main
steps: Hand representation and Hand posture classification.

Hand representation composes of three sub-steps that are Pixel-
level feature extraction, Patch-level feature extraction, and Image-
level feature extraction.

� Pixel-level feature extraction: At this level, a normalized gradient
vector is computed for each pixel of the image. The normalized
gradient vector at a pixel p is defined by its magnitude m(p) and
normalized orientation ωðpÞ ¼ θðpÞ�θðPÞ, where θðpÞ is orien-
tation of gradient vector at the pixel p, and θðPÞ is the dominant
orientation of the patch P that is the vector sum of all the gra-
dient vectors in the patch. This normalization will make patch-
level features invariant to rotation. In practice, the normalized
orientation of a gradient vector will be:

~ωðpÞ ¼ ½ sin ðωðpÞÞ cos ðωðpÞÞ� ð11Þ

� Patch-level feature extraction: Firstly, a set of patches is gener-
ated with adaptive size. The size of the patches is directly pro-
portional to image size. On one hand, this ensures the number
of patches to be considered unchanged. On the other hand, it
makes the patch descriptor more robust to scale change. For
each patch, we compute patch-level features based on a given
definition of match kernel. The gradient match kernel is con-
structed from three kernels that are gradient magnitude kernel
k ~m , orientation kernel ko and position kernel kp.

KgradientðP;Q Þ ¼
X
pAP

X
p0 AQ

k ~m ðp; p0Þkoð ~ωðpÞ; ~ωðp0ÞÞkpðp; p0Þ ð12Þ

where P and Q are patches of two different images that we need
to measure the similarity. p and p0 denote the 2D position of a
pixel in the image patch P and Q respectively. Let φoð:Þ and φpð:Þ
the feature maps for the gradient orientation kernel ko and
position kernel kp respectively. Then, the approximate feature
over image patch P is constructed as:

F gradientðPÞ ¼
X
pAP

~mðpÞϕoð ~ωðpÞÞ � ϕpðpÞ ð13Þ

where � is the Kronecker product, ϕoð ~ωðpÞÞ and ϕpðpÞ are
approximate feature maps for the kernel ko and kp, respectively.
The approximate feature maps are computed based on a basic
method of kernel descriptor. The basic idea of representation
based on kernel methods is to compute the approximate
explicit feature map for kernel match function (Maji et al.,
2013; Vedaldi and Zisserman, 2012; Bo and Sminchisescu, 2009;
Bo et al., 2010).

� Image-level feature extraction: At this step, a pyramid structure
specific to hand postures is used to combine patch features. This
specific pyramid structure makes the descriptor more suitable
for hand representation. We can see the proposed hand pyr-
amid structure in Fig. 8. Based on the structure of the hand, the
ellipses and the lines are used to divide the hand region into
parts that contain different components of the hand such as
palm and fingers. We remark that the regions at images corners
often do not contain hands. For this reason, we only consider
the area inside the inscribed ellipse of the hand image rectangle
bounding box. The hand pyramid structure has 3 layers.
Given an image, the final representation is built based on
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Without hand segmentation

With hand segmentation
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Fig. 10. Seven type of the postures recognized in the proposed system. (a) The first row: original images with results of the hand detections (in red boxes). (b) The second
row: zoom-in version of the hand regions without segmentation. (c) The third row: the corresponding segmented hand.

Table 4
The required time to hand segmentation.

Subject ID 1 2 3 4 5 6 7 8 9 10

P
Frames 1132 1154 1496 1462 1288 1543 1427 1402 1295 1254

1/fps (ms) 256 286 368 394 299 274 284 365 324 241
Avg.7std 285.45748.97 m
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features extracted from lower levels using efficient match
kernels (EMK) proposed in Bo et al. (2010). First, the feature
vector for each cell of the hand pyramid structure is computed.
The final descriptor is the concatenation of feature vectors of all
cells (see Fig. 8).

Hand posture recognition: We use Multi-class SVM classifier
with the input is hand descriptor vector computed in the previous
step. We observe that the accuracy of the classifier is strongly
affected by background in the hand image. For this reason, we
propose to use the segmented hand regions to improve the per-
formance of hand posture recognition.
4. Experimental results

We evaluate the proposed method in term of the learning time
versus the robustness and real time performances. The proposed
framework is warped in a Cþþ program on a PC Core i5 3.10 GHz
CPU, 4GB RAM. A MS Kinect sensor (http://www.microsoft.com/
en-us/kinectforwindows) is mounted on a tripod at fixed position.
The Kinect sensor captures data at 20 fps. We setup the evalua-
tions in two different scenarios. The main purposes are to show
effectiveness of the proposed method in different lighting condi-
tions and/or appearances of complex backgrounds. Ten volunteers
(5 males, 5 females) are asked to implement the evaluations. We
obtained a hand posture dataset of 10 subjects including equal
number postures for each environment. The subjects are asked to
shot their postures in either standing or siting positions in order to
incorporate the natural variations which may appear during the
learning stages. The hand posture dataset is available at http://
www.mica.edu.vn/perso/Doan-Thi-Huong-Giang/MICA_HandSet.
Activities of the participants are recorded in log-files. They are
analyzed to measure computational time costs of the proposed
user-guide scheme, and to evaluate accuracy of the hand seg-
mentation, as well as the hand posture recognition algorithms.

Fig. 9 shows a full evaluation scenario of an end-user who
interacts with the proposed system. In this example, the experi-
mental room is a smart-room with consumer electronic devices
such as Television, air-condition, and a smart-lighting system. The
end-user will follow a series guides on the PC's screen. Firstly,
without appearances of the end-user in the experimental room,
the system is activated to learn parameters of the background
model, as described in the Stage 1. Then the end-user entrances
the experimental room, stands in front of the device, and follows
guides in the Stage 2 to learning skin model. Similarly, in Stage 3,
the end-user is asked to raise her hand to learn distances from the
hand to Kinect. Besides three stages of the proposed user-guide
scheme, fourth stage captures seven postures of the end-user in
order to evaluate hand posture recognition algorithms.

4.1. The required learning time for end-users

We calculate the required learning time for each stage. Details
are reported below.

� Stage 1: To learn parameters of the background model. It is the
same computational time for all evaluators because this pro-
cedure runs once only. However, we still implement this pro-
cedure for all evaluators to calculate an average time. Table 1
shows the computational time of this stage.

� Stage 2: The most consuming time is to learn parameters of the
skin color model. We calculate a duration of each evaluator that

http://www.mica.edu.vn/perso/Doan-Thi-Huong-Giang/MICA_HandSet
http://www.mica.edu.vn/perso/Doan-Thi-Huong-Giang/MICA_HandSet


Table 5
The required time to hand posture recognition.

Subject 1 2 3 4 5 6 7 8 9 10

P
Frames 289 273 287 277 279 335 310 314 327 318

Time (fps) 0.15 0.141 0.153 0.139 0.145 0.174 0.161 0.142 0.14 0.149
Avg.7std 0.14970.01 fps

Table 6
Results of the JI indexes without/with learning scheme.

Subject 1 2 3 4 5 6 7 8 9 10

P
Frames 102 121 157 144 147 149 141 142 125 135

Without learning scheme
JI ð%Þ 55.4 53.4 71.7 56.8 68.2 73.5 58.2 63.1 64.8 61.3
Avg.7std 62.676.5%

With learning scheme
JI ð%Þ 86.7 87.6 89.5 88.9 90.4 84.8 87.8 92.4 88.1 83.6
Avg.7std 87.9872.58%
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Fig. 11. Results of the kernel-based descriptors for hand posture recognition
without/with segmentation.
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is from starting time when their hands are located to stopping
time when the system stops due to the convergence of the
learnt parameters. Table 2 reports the required time of this step.

� Stage 3: To learn the hand to Kinect distances. The evaluators
raise their hands in a few times until the system gives a stop
message. Table 3 reports the required time of this step.

The required learning time for an end-user is averaged from the
data shown in Tables 1–3. It is 14.2171.89 s per user for entire
learning procedures.
4.2. The computational time for hand segmentation and recognition

After training procedures, we ask the participants to implement
an additional step, that is Stage 4. In this stage, seven postures of
each evaluator are shot, as shown in Fig. 10. We then analyze the
log activities to calculate computational time for the segmentation
and recognition procedures.

Table 4 reports the required time for detecting and segmenting
hand regions from a captured image. The computational time for
recognizing a hand posture is reported in Table 5. Consequently, by
utilizing the proposed user-guide scheme, computational time to
cover whole the proposed flow-works averagely is 285745 ms, or
equal 3 fps. These costs are significantly lower than the hand
detection methods in Mittal et al. (2011), and the hand posture
recognition algorithms in Pisharady et al. (2012), respectively.

As shown in Figs. 10 and 9, the hand postures were shot in two
different experimental rooms against complex natural back-
grounds, and in different lighting conditions. For instance, Posture
6 in Fig. 10 is captured in relatively low lighting condition, whereas
Posture 1 is captured in enough lighting condition. Furthermore,
hand to Kinect distances are changed when we collect the dataset.
Posture 3 is captured at relatively closed distance, whereas Posture
5 is shot relatively far one. These conditions made the hand pos-
ture dataset captured with various hand shapes and sizes.

4.3. Performance of the hand region segmentations

Fig. 10 (c) illustrates several segmented hands extracted the
images captured at different view points. As shown, our proposed
method segment correctly hand regions in different lighting con-
ditions, against various natural complex backgrounds. For quan-
titative evaluation, we use Jaccard Index (McGuinness and O
Connor, 2010) that is calculated by

JI¼HDT \ HGT
HDT [ HGT

ð14Þ

where HDT is regions of the hands segmented by the proposed
method, HGT is ground-truth one. The segmentation result is
better if the JI index is more closed by 100%. Table 6 shows JI
indexes without/with using the proposed user-guide scheme.
Obviously, by paying a cost for learning parameters, JI indexes are
significantly increasing from 62.6% to 87.98%.

4.4. The hand posture recognition results

We evaluate performance of the proposed kernel-based
descriptors method with seven hand postures as shown in
Fig. 10(c). To avoid over-fitting by similar frames, we simply
sampling at a rate of 1/3 from the captured image sequences. For
preparing training and testing data, we follow Leave-p-out-cross-
validation method, in which p equals 5. An accuracy of the
recognition is a ratio which is calculated by the numbers of true
detection per total postures testing. The accuracy for each testing
set is given in Fig. 11. The horizontal axis denotes the trial
implemented to validate the proposed algorithms. A trial means a
validation with a test-set that is generated in scheme of the Leave-
p-out-cross-validation. The vertical axis presents the average of the
accuracy of the proposed hand posture recognition algorithms.
Averaging on whole trials, the proposed method obtains the
accuracy rate at 91.272.9%. This performance is comparable with
results of the current state-of-art works (e.g., Pisharady et al., 2012
reports 93%). Moreover, Fig. 11 also confirms that by utilizing
kernel-based descriptors, use of the segmented hands from com-
plicated backgrounds outperforms a scheme of without hand
segmentations for all of the testing set.

We continue evaluating the robustness of the kernel-based
descriptors on a public hand posture dataset, that is NUS II
(Pisharady et al., 2012). This evaluation is to confirm that the
kernel-based descriptors are particularly improving the recogni-
tion rate for the segmented hand regions. NUS dataset consists of
10 type of postures, captured by 40 subjects, 5 images per class per



Fig. 12. Sample images from NUS II hand posture dataset. (a) Posture class of NUS II dataset from 1 to 10 (Pisharady et al., 2012) and (b) samples of cropped whole hand
region images from NUS II dataset.
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subject. Original examples of the NUS dataset are shown in Fig. 12
(a), whereas the corresponding hand regions are manually
extracted, as shown in Fig. 12(b). By using the proposed kernel-
based descriptors on RGB features, we obtain the best recognition
rate at 97.4%. These results outperform the results reported in the
relevant works (Pisharady et al., 2012). They also are better than
the results reported in Fig. 11. The main reasons are that hand
postures defined in NUS dataset are more discriminated than ours,
and NUS hand dataset is captured at higher resolutions.
5. Discussions and conclusions

Discussions: According to the experimental results, we have
demonstrated the efficiency of the proposed user-guide scheme
for hand posture recognitions. It confirms that segmenting hand
regions and hereby recognizing a hand posture are more accuracy.
The fact that we have tried to setup the evaluations in different
experimental rooms against various natural complex background.
However, it is much more difficult to confirm that the proposed
method could still work well due to the complicated lighting
conditions, which may appear in indoor environments. While
estimating the hand-Kinect distances to be more stable with
lighting conditions (thanks to utilizing depth data), the parameters
of the skin color model can be changed. As results, the hand
regions will be over/or under pruned.

In current experimental setup, we asked subjects stand/or sit in
front of Kinect sensors. This request may be not reasonable in the
practices. In order to ensure natural behavior of the system, an
end-user can stand in any direction to control a home alliance
device. To solve this issue, a system utilizing multiple Kinects may
be more appropriated. Fusing the hand regions from multiple
Kinects could also resolve issues of the clustered backgrounds,
particularly, when the background and hand skin colors are
identical. In such cases, evaluating the Kernel-based descriptors
from multiple view-points of the hand postures need to be
implemented.

Feedbacks from end-users, who participated in the evaluations,
have been not reported in our experimental results. For instance, a
question can be raised: “Is it easy to do a learning stage?”.
Obviously, an end-user could be failed in a learning phase. He/she
is requested to implement again in that case. A survey on user's
attitudes suggests us directions to improve the current system to
be more convenient and efficient.

Conclusions: This paper described a robust and real-time vision-
based hand posture recognition system. To achieve this goal, we
designed an efficient user-guide learning scheme and represented
a compactness of hand postures. We also reported that kernel-
based descriptors significantly increases accuracy of the recogni-
tion rate when the hand regions are separated from the back-
ground. Performances of the proposed method are comparable
with results of the stage-of-the art methods. However our system
was relatively faster than those works. Consequently, the proposed
method is feasible to deploy practical application, such as to
control smart TV or smart lighting system in indoor. In the future,
we will continue research on learning parameters for the dynamic
hand gesture recognition as well as evaluating relevant feedbacks
of the user-guide scheme.
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