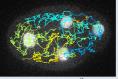
ipal

Automated analysis of tissue organisation : application to the cyto-architecture of Islet of Langerhans

H. Tran, IPAL/BII, UPMC, Singapore R. Arrojo, NTU medical school, Singapore PO. Berggren, Karolinska Institute, Sweden <u>I. Boudier</u>, IPAL/BII, UPMC, Singapore Thomas.boudler@upmc.fr

AURA - 18/10/2016

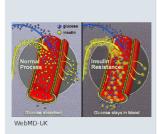
1


ıpal

Biomedical imaging

- Hosted by BioInformatics Institute (BII)
- Analysis of biological complexity in 3D/4D
- Denoising (Coll. CINTRA)
- 3D segmentation and analysis, 4D tracking
- Analysis of spatial and temporal organisation

AURA - 18/10/2016

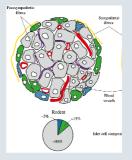


lpal

Langerhans Islets

- Small structures in the pancreas
 - 0.1 mm, 3 millions
- Role is to secret and deliver insulin
- Malfunctions will cause high level of glucose in blood
- → Diabetes
 - Type I and II

AURA - 18/10/2016

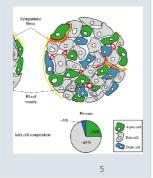

2

ıpal

Langerhans Islets

- Composed of 3 main cell types:
 - Alpha, beta and delta
 - Beta cells are most numerous and secret insulin
- Spatial organisation differ between species
 - Especially between mouse and mokeys/humans

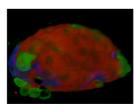
AURA - 18/10/2016


4

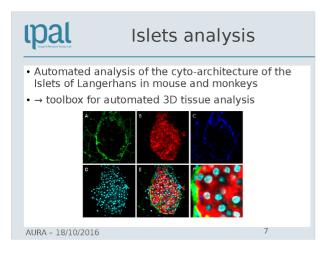
tpal lings of Principle Accounts

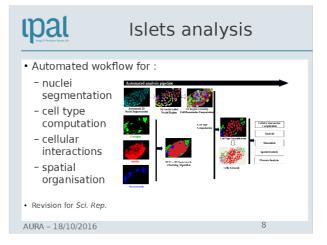
Langerhans Islets

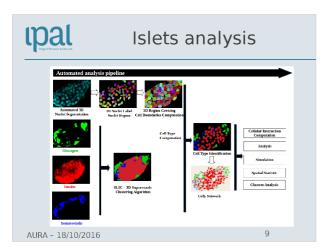
- Composed of 3 main cell types:
 - Alpha, beta and delta
 - Beta cells are most numerous and secret insulin
- Spatial organisation differ between species
 - Especially between mouse and mokeys/humans

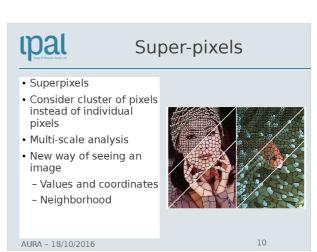

AURA - 18/10/2016

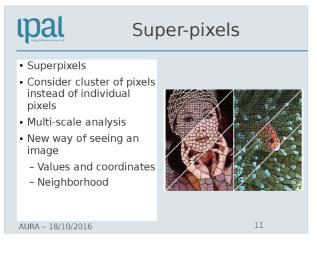
ıpal

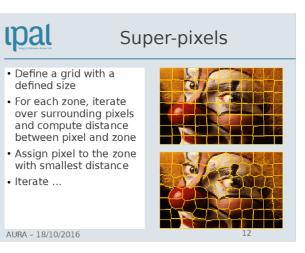

Islets analysis


- Automated analysis of the cyto-architecture of the Islets of Langerhans in mouse and monkeys
- → toolbox for automated 3D tissue analysis




AURA - 18/10/2016


6



tpal

Super-pixels

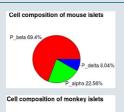
- · Define a grid with a defined size
- For each zone, iterate over surrounding pixels and compute distance between pixel and zone
- · Assign pixel to the zone with smallest distance
- Iterate ...

AURA - 18/10/2016

ipal

Islets analysis

- We apply the superpixels method to our data
- Cluster together pixels having similar content of alpha, beta and delta markers
- Define the cell-type according to the SLIC content outside the nuclei

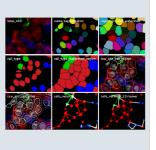

AURA - 18/10/2016

ipal

Islets analysis

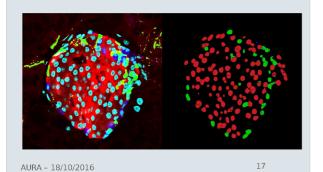
- We apply the superpixels method to our data
- · Cluster together pixels having similar content of alpha, beta and delta markers
- Define the cell-type according to the SLIC content outside the nuclei

AURA - 18/10/2016

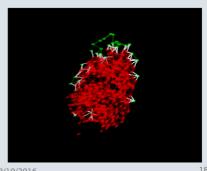


ipal

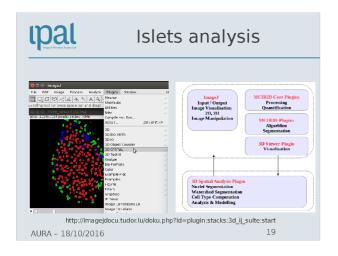
Islets analysis

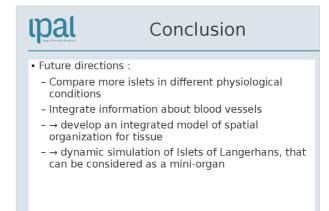

- · We then compute cellular interactions as touching cells
- · Compare frequencies of observed interactions to random organization
- · Monkey organization a bit more random than mouse organization

AURA - 18/10/2016

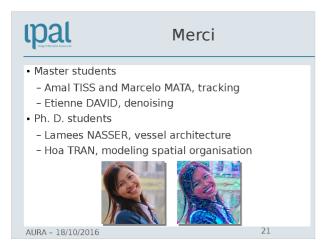

tpal trage & Persader Access Lab

Islets analysis




tpal long to Personal Local Line

Islets analysis



AURA - 18/10/2016

AURA - 18/10/2016

