

International Research Institute MICA

Multimedia, Information, Communication & Applications UMI 2954

Hanoi University of Science and Technology
1 Dai Co Viet - Hanoi - Vietnam

MICA Institute

Context

Road Transportation

➤In co-operation with IMEP-LAHC laboratory

Context

Automatic toll payment system without stopping vehicles, or Free-Flow toll system

Free-Flow Toll Collection Components

System Components:

In-Vehicle Unit or Transponder

Roadside Equipment

Call Centre

Back Office System

Operating principle

MICA 2013

Automatic toll payment system without stopping vehicles or Free-Flow toll system Reader Moving vehicle identification system using transponders 1.Who are you? Camera Vehicle classification system 1-1/1' am a 2.What kind of truck vehicle is passing here? Badge It is a truck! **Matching!** Tariff: 22.6 euros ¹Highway segment: Grenoble₅- Lyon

Operating principle

Outline

- Moving <u>Vehicle Identification System using</u>
 <u>Transponders (VST system)</u>
 - Objectives
 - VST system: State of the art
 - Our high-gain antenna: low profile, low cost
- Vehicle Type Classification System using Electromagnetic Waves (VTC system)
 - Objectives
 - VTC system: State of the art
 - Our VTC system
- Conclusions and Perspectives

Outline

- Moving <u>Vehicle Identification System using</u>
 <u>Transponders (VST system)</u>
 - Objectives
 - VST system: State of the art
 - Our high-gain antenna: low profile, low cost
- Vehicle Type Classification System using Electromagnetic Waves (VTC system)
 - Objectives
 - VTC system: State of the art
 - Our VTC system
- Conclusions and Perspectives

VST system: State of the art

Comparison of RF technologies using in transponders of VST system

	DSRC	RFID UHF	FM radio	Cellular	
	DSRC	KEID OHE	FIVI radio	Cenular	GNSS
	(5.795-5.815 GHz)	(865-868 MHz)			
Max range	< 1 km	Max.300m (at	Hundreds km	< 10km	Thousands
		required -			km
		30dBm			
		sensitivity)			
Data rate	6-27 Mbps	0.5 Mbps	>10 kbps	Actually: >10	100-200 Mbps
				kbps	
				3G : 2-3 Mbps	
Coverage	Line of Sight	Line of Sight	Area	Area	Area
Price (per bit)	\$	\$	\$	\$\$	\$\$\$

DSRC: Dedicated Short Range Communication

RFID UHF: Radio Frequency Identification at Ultra High Frequency

GNSS: Global Navigation Satellite System

Objectives of VST system

A - Moving Vehicle Identification System using Transponders (VST system)

Challenge	Improving antenna performance	
Extending of operation range	→ ≻ High gain antenna, covering a lane	
➤ System size	→ ≻ Low profile	
➤ Price	→ ≻ Low cost	

Vehicle speed: > 60km/h

Performance antenna design for VST system

Center frequency: 868 MHz (RFID UHF)

➤Gain: from 10dBi

>Angular width (-3dB): 30°

➤ Center frequency: 5.8 GHz (DSRC)

Gain : from 12dBi

➤ Angular width (-3dB): 30°

Objectives of VST system

A - Moving Vehicle Identification System using Transponders (VST system)

Existing antennas	Name	Horizontal (degrees)	Vertical (degrees)	Gain (dBi)	Dimension (mm)	Wavelength (λ)
TagProduct Inc.	RFID 7dBi	68	68	7	240x240x30	0.7x0.7x0.09
TagProduct Inc.	ANTE0090	68	70	8.9	243x290x85	0.7x0.84x0.25
SkyRFID Inc.	SkyRFID	70	70	10	405x405x35	1.17x1.17x0.1
DGGate Inc.	RFID 12dBi UHF	65	34	12	440x440x50	1.27x1.27x0.15
DGGate Inc.	RFID 16dBi UHF	60	14	16	1200x280x130	3.48x0.81x0.38

Performance antenna design for VST system

Center frequency: 868 MHz (RFID UHF)

➤ Center frequency: 5.8 GHz (DSRC)

➤ Gain: from 10dBi

➤ Gain: from 12dBi

>Angular with (-3 dB): 30°

➤ Angular with (-3 dB): 30°

Different types of high-gain antenna

Helical antenna

Horn antenna

Yagi-Uda antenna

Reflector antenna

Len antenna

Antenna arrays

EBG¹ antenna

Meta-material antenna

Our high-gain antennas

Reducing price of system

Extending of operating zone

Design and fabrication of high-gain, low cost antenna

➤ Gain: from 10dBi for UHF and 12 dBi for DSRC frequency

➤ Angular width (-3dB): 30°

- ➤ Metallic antenna (11 dBi)
- ➤ Cylinder-Yagi antenna (9.9 dBi)

Frequency: DSRC (5.8 GHz)

- Cylinder-Yagi antenna (12 dBi)
- ➤ Meta-materials antenna (15 dBi)

Our UHF high-gain antennas (868 MHz)

Low cost, easy to industrialize Mețallic-antenceneral VST system Cylinder-Yagi antenna 1.01x0.58x0.07(wavelength 0.77x1.37x1.15 (wavelength) Gantry 9.9 dBi, ~30° The slot BADGE Excitation by the balun PC **VST** system without gantry using Cylinder-Yagi antenna Without gantry **BADGE** READER Phi

14

Ground antenna

Our DSRC high-gain antennas (5.8 GHz)

Cylinder-Yagi antenna

1.46x1.23x0.69 (wavelength) 12 dBi, ~30°

M .T. Le et al . , Proc. of SEATUC, 2011

Meta-material antenna

M .T. Le et al . , *Proc. of IEEE ICWITS*, 2012

Low profile

VST multi-lane system

Comparison with existing antennas

UHF: 868 MHz

Existing antennas	Name	Horizontal (degrees)	Vertical (degrees)	Gain (dBi)	Dimension (mm)	Wavelength (λ)
TagProduct Inc.	RFID 7dBi	68	68	7	240x240x30	0.7x0.7x0.09
TagProduct Inc.	ANTE0090	68	70	8.9	243x290x85	0.7x0.84x0.25
SkyRFID Inc.	SkyRFID	70	70	10	405x405x35	1.17x1.17x0.1
DGGate Inc.	RFID 12dBi UHF	34	65	12	440x440x50	1.27x1.27x0.15
DGGate Inc.	RFID 16dBi UHF	60	14	16	1200x280x130	3.48x0.81x0.38
Our antenna	Metallic antenna	39	55	11.6	350x200x23	1.01x0.58x0.07

DSRC: 5.8 GHz

Existing antennas	Name	Horizontal (degrees)	Vertical (degrees)	Gain (dBi)	Dimension (mm)	Wavelength (λ)
Mobimark Inc.	DSRC 12dBi	30	55	12	161x70x14	3.09x1.35x0.27
Q-free Inc.	DSRC 14dBi	45	45	14	320x76x1	6.15x1.46x0.02
Norbit Inc.	DSRC 19dBi	19	9.5	19	580x110x10	11.2x2.11x0.19
Laird Inc.	Plat Antenna 58	16	8	19	190x190x20	3.66x3.66x0.38
Our antenna	LHM DSRC 58	30	36	15	90x90x32	1.73x1.73x0.61

MICA 2013

16

Outline

- Moving <u>Vehicle Identification System using</u>
 <u>Transponders (VST system)</u>
 - Objectives
 - VST system: State of the art
 - Our high-gain antenna: low profile, low cost
- Vehicle Type Classification System using Electromagnetic Waves (VTC system)
 - Objectives
 - VTC system: State of the art
 - Our VTC system
- Conclusions and Perspectives

VTC system: State of the art

➤ Actual vehicle classification systems

TECHNOLOGY	PRECISION	COMMUNICATION BANDWIDTH	PRICE	CONDITION OF ENVIRONMENT
Inductive loop	++	Low to moderate	+	
Infrarred	+	Low to moderate	++	
Lidar	+++	Moderate	+++	
Camera	+++	Low to high	++++	

Infrared, Lidar, Camera are sensitive to inclement weather, day and night lighting as well as day-to-night transition

Objectives of VTC system

B - Vehicle **T**ype **C**lassification system using electromagnetic waves (VTC system)

CTV system implementation

> Transmitting signal: monocycle pulse

Advantages:

- ✓ Mobile target measurement (Doppler)
- ✓ High accuracy distance measurement
- ✓ Target response separation

Target classification based on backscattered waves captured by receiver

Backscattered wave measurement

Experiment 1: Different plaques

Experiment 2: Head and back of vehicles

Methodology of target classification

- Method 1: target classification based on Changing waveform using a Wide Beamwidth Antenna (CWBA method)

Target presence detection

Distance measurement

> Based on delay time of backscattered wave captured by receiver:

Target classification (1/3): CWBA method

Method 1: based on correlation coefficient $R_{12}(\tau) = \int s_1(t)s_2(t+\tau)dt$ Back of Twingo observation: $s_1^{d_x}$

Target classification (2/3): PWBA method

 \succ Method 2: based on backscattered power at a certain distance $P_{target}^{d_x}$

$$\sigma_{target} = \chi . R_i^2 . R_r^2 . \frac{P_r}{P_e} = \chi . R^4 . \frac{P_{target}^R}{P_e}$$

Backscattered power of plaques at 3m

Plaque PC6: 76.6x62.0 (cm²)-P₆ P5 PC5: 51.0x48.5 (cm²) P4:100x100 (cm²)-P₄ P3: 50x30(cm²) $P_{P2_3m} \cong P_{P3_3m}$ **P2:** $30x50(cm^2)$ P1: 30x30(cm²) 0.01 0.02 0.05 Backscattered power

Backscattered power of vehicles at 3m Vehicle

Target classification (3/3): PBSA method

Method 3: based on target width calculation from backscattered power

MICA 2013

Target classification (3/3): PBSA method

Method 3: based on target width calculation from backscattered power

Summary of three methods

- > Our first study shows the ability of three methods
- > First results are encouraging for the next work

Method 1: CWBA

- Based on correlation coefficient
- Depending on the backscattered waveform
- Less precision when targets are in the same family
- Not able to work in the case 2 & 3

Method 2: PWBA

- Based on backscattered power
- Stable with backscattered waveform
- Not able to work in the case 2
- Able to work in the case 3 (with condition)

Method 3: PBSA

- Based on target width calculation from backscattered power (like method 2) combining with beamsteering time => more accuracy
- Stable with backscattered waveform
- Able to work in the case 2
- Able to work in the case 3 (with condition)

Outline

- Moving <u>Vehicle Identification System using</u>
 <u>Transponders (VST system)</u>
 - Objectives
 - VST system: State of the art
 - Our high-gain antenna: low profile, low cost
- Vehicle Type Classification System using Electromagnetic Waves (VTC system)
 - Objectives
 - VTC system: State of the art
 - Our VTC system
- Conclusions and Perspectives

Conclusions

- Fabrication and measurement high-gain antenna for VST system for improving operation range
 - UHF RFID frequency (868 MHz):
 - Metallic antenna
 - Cylinder-yagi antenna => VST system without gantry
 - DSRC frequency (5.8 GHz):
 - Cylinder-yagi antenna
 - Meta-material antenna => New LHM structure for high-gain antenna
 - Meta-material beam-steering antenna=> Multi-lane system
- Design of VTC system using electromagnetic waves
 - Using antenna instead of camera/lidar sensor
 - Three proposed methods
 - Implementation in lab

Perspectives

VST system

- Taking into account the ground effect to our Cylinder-yagi antenna
- DSRC beam-steering antenna => develop a controllable radiation diagram antenna

VTC system

- Increase the database for developing target classification algorithm
- Improve the Ultra-Wide Band antenna gain used in the system
- Develop a receiver for VTC system

