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Abstract-A conventional method to inspect the varietal purity 
of rice seeds is based on human visual inspection where a random 
sample is drawn from a batch. This is a tedious, laborious, time 
consuming and extremely inefficient task. This paper presents 
an automatic rice seed inspection method using Hyperspectral 
imaging and machine learning, to automatically detect unwanted 
seeds from other varieties which may be contained in a batch. 
Hyperspectral image data from Near-infrared (NIR) camera 
are acquired for six common rice seed varieties. The results 
of applying two classifiers are presented, a Support Vector 
Machine (SVM) and a Random Forest (RF), where each consists 
of six one-versus-rest binary classifiers. The results show that 
combining spectral and shape-based features derived from the 
rice seeds, increase precision of the multi-label classification to 
84% compared 74% when only visual features are used. 

I. INTRODUCTION 

Ensuring rice seed quality is a significant challenge for 
the large rice export nations such as India, Thailand, US 
and Vietnam. Rice seed impurities can impact on the yield 
by introducing weeds and off-types into the crop making it 
susceptible to disease. The consequences are not limited to a 
decrease in yield but also to the grade and price of the produce. 
The responsibility lies with rice seed producers to ensure high 
quality seed and a critical procedure is the batch screening and 
inspection. Conventional methods to inspect seeds, as shown 
in Figure l(a), rely on extracting a sample from a batch. The 
inspection is performed visually to assess the grain properties, 
such as shape, length, width and size. This task is tedious, 
laborious, time consuming and requires experienced personnel. 

Recently, the cost and size of Hyperspectral Imaging 
(HSI) Systems has reduced significantly. This technology has 
emerged proves to be a useful tool in food sciences and appli
cations. Such systems provide spatial and textural information 
like other traditional cameras with the added advantage of 
high resolution spectral signatures for each pixel in the image 
data acquired. In this paper, we investigate the benefits of 
analysing the extracted features taken from a HSI system to 
solve issues of rice seed varietal purity inspection. We deploy 
an automatic inspection method which combines hyperspectral 
imaging and machine learning techniques to automatically 
detect seeds which are erroneously contained within a batch 

Fig. 1. (a) A conventional way (human visual) to inspect purity of rice seed 
samples. (b) Six common rice seed varieties examined in this study. 

when they actually belong to a completely different species. 
In this study, the purity of six common rice seed varieties are 
examined, as shown in Figure 1 (b). 

Automatic rice seed inspection systems that employ ma
chine vision and address this challenge have been shown 
in previous works [1]-[3]. Commonly, shape descriptors of 
the seed samples are extracted through image processing and 
vision-based approaches. The challenge in comparing and 
quantifying performance between these approaches, is that 
each one has been evaluated on different rice seed varieties. It 
is therefore unclear if the differences in performance come 
from better feature descriptors or if this is due to varying 
inter-class/intra-class variations among the examined species. 
In this study, a HSI system provides both spatial and spectral 
information about the seed samples. Therefore, the inspection 
techniques that utilize both types of feature is investigated. 
We formulate the purity inspection problem as six one-versus
rest binary classifiers. The binary classifiers are built using 
SVM and a RF techniques and both approaches are compared. 
While the spatial features measure physical properties of rice 
seed, the mean spectrum of all pixels in a seed sample can 
be used to infer chemical properties of the species. The use 
of discriminant analysis techniques and the combinations of 
both types of features provide significant benefits and potential 
in HSI offering great advantages for the development of a 
machine vision system for rice seed quality assessments. 

The remainder of paper is organized as follows. Section II 
briefly describes related techniques for rice and rice seed qual
ity assessments using vision-basedlHSI systems. Section III 
describes the device configuration, data acquisitions and cor
rection procedures. Section IV presents the proposed feature 
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extraction approach. Section V analyses inter-and intra-class 
variations of the examined species. Section VI reports the 
classification results. Finally, Section VII concludes the work 
and suggests further research directions. 

II. RELATED WORK 

There are many machine vision systems for food quality 
evaluation. A good survey can be found in Da-Wen Sun's 
textbook [4]. In Chapter 16 of this textbook, Y. Ogawa com
prehensively surveys rice grain quality evaluation techniques 
using computer vision technology which analyses features 
such as physical property measurements, compound content 
and distribution. Lai et al. [5] applied an interactive image 
analysis method for determining the physical dimensions 
and classifying the variety of grains. In [6], the authors 
measured physical dimensions such as grain contour, size, 
colour variance and distribution and damage. Sakai et al. [7] 
demonstrated the use of two-dimensional image analysis for 
the determination of the shape of brown and polished rice 
grains of four varieties. Z. Lui et al. [1] implemented a method 
of identification based on neural networks to classify rice 
variety using colour and shape features. Guzman et al. [8] 
investigated grain features extracted from each sample image. 
They then utilized multilayer artificial neural network models 
for automatic identification of 52 rice grains. More recent 
works [1]-[3] focused on rice seed variety classification. 
Commonly, shape descriptors of the seed samples are ex
tracted, then the classifiers such as Random Forests [3], Neural 
Networks [1] or Cubic B-Splines shape model [9] are trained. 
An automatic machine-vision system includes several stages, 
in which the most important steps are image data collection, 
feature extraction (such as shape, size, colour, and orientation 
etc.), and feature representations via models using pattern 
recognition algorithms or multivariate analysis techniques. 

HSI specific systems for the food and agriculture engineer
ing have been investigated also been addressed in the literature. 
The authors in [10] give a broad range of HSI applications for 
beef, pork, fruits, and plant products quality evaluations. For 
the rice grain quality inspection, [11] used a range of VISINIR 
spectral (400-1000 nm) information for discriminating three 
rice varieties. By using Principle Component Analysis (PCA) 
and Back Propagation Neural Network (BPNN), they achieved 
a classification accuracy of 89.18 and 89.91% for PCA and 
BPNN model, respectively. The authors in [12] suggest that 
a combination of the Least squares Support Vector Machine 
(LS-SVM) regression method and VislNIR spectroscopy at 
range 325-1075 nm provides a realisable technique to monitor 
the nitrogen status in rice. More recently, a HSI system has 
been used in [13] for identifying four rice seed cultivars. By 
utilizing the full spectral range 1,039-1,612 nm, they achieved 
very promising results, that is up to 100% accuracy with a 
Random Forest (RF) classifier. However, their evaluation is 
performed on four cultivars in [13] and therefore, it is unclear 
how the inter/intra class variations affect the performance. In 
this paper, we extract and combine both spatial and spectral 
features from the hyperspectral datacube acquired by a HSI 

Fig. 2. Experimental setup of the data acquisition. (a) A schematic view. 
(b) A Photo of the real HSI system 

system with range of NIR spectral. We argue that the combi
nation of features increases classification performance. 

III. RICE SEED SAMPLE DATA COLLECTIONS USING A 
HYPERSPECTRAL IMAGING SYSTEM 

A. Hyperspectral Imaging System Setup 
The experimental setup of the data acquisition system is 

shown in Figure 2(a). The NIR HSI system used to capture 
the data was the Inno-Spec™ Redeye 1.7 model (Inno-Spec 
GmbH, Germany) capturing 256 wavelengths from 950.73 
- 1759.4 nm. The HSI device operates using a line scan 
where the spectral information from an entire row of pixels 
is captured at any given time. For this purpose, a conveyor 
platform (the stage) was positioned underneath the camera to 
allow scanning. Two halogen bulbs were used to illuminate 
the scene and the bulbs were positioned to create balanced 
illumination across the scan line. To ensure repeatable data 
acquisitions, the halogen bulbs were switched on and allowed 
to reach stable operating temperature before the data were 
acquired in a dark room, to minimise illumination variability 
between captures. To properly collect the data, the following 
parameters in the HSI system were adjusted: 

• The exposure time of the camera (e.g., 500 ms) and the 
speed of movement of the stage (5 mm!s), was calibrated 
to avoid spatial distortions. 

• The aperture (f=1I8) was set based on the exposure time 
to ensure a suitable light intensity and contrast. 

• The height between the lens and the stage was set so that 
whole seed samples area are in FOV of the camera. 

A photo of the real HSI system is shown in Figure 2(b). 

B. Rice seed dataset acquisition 

Six rice seed varieties (as shown in Figure 1(b)) were 
obtained from a seed production company in Vietnam: BCI5, 
BT07, Khang Dan 18 (shortly named K DI8), N97, Nep 
Lang Lieu (LL), and Q5. The selected varieties are the most 
frequently planted in North Vietnam. The producer screened 
the samples using experienced technical staff to ensure that 
each sample population only contained seeds of the cor
responding species. The sample population of each variety 
consisted of 108 seeds with 648 seeds across all varieties. 
The 108 samples from each species was then divided to 3 
batches with 36 samples each. The 36 seeds were positioned 
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Fig. 3. Data correction results. (a) - (c) Nonnalized images at specific wavelengths. (d) Profiles of the normalised wavelength 

on a white sheet of paper constructing a 6 x 6 matrix (e.g., as 
shown in Figures 3(a)-(c)), that was placed on a conveyor 
platform for imaging by the NIR camera. This resulted in 
3 hyperspectral datacubes per variety resulting in 36 total 
number of the datacubes. 

C. Data correction 
Let Y denote a datacube consisting of reflectance values >. 

as a two-parameter set: 

y)..(x), x EX,>' E A (1) 

where >. represents a wavelength belonging to A, that is a 
set of the wavelengths at NIR (Near-Infrared) range 950.73-
1759.4 nm and x represents a pixel in X where X is 2-
D coordinate by row m and column n. For each specific 
wavelength, the array of reflectance values can be regarded 
as an image where spatial relationships between the pixel 
reflectance values have meanings. For example, Figure 3 
represents three images acquired by the device at specific 
wavelengths of 1109.3 nm, 1267.78 nm, and 1424.61 nm. It 
is noted that at each x, the raw reflectance value could vary 
due to different lighting conditions or manufacturing tolerance 
of the pixels in the imaging sensor. To reduce the variation in 
the acquired reflectance values among acquisitions the data are 
normalised relative to known maximum reflectance value as 
below: 

( ) ._ Yraw,)..(x) - b(n, >.) >. E A 
Y).. X .- w(n, >.) - b(>., >.) , (2) 

where b(n, >.) and w(n, >.) are the reflectance values of ref
erence dark and white objects. The dark object is setup by 
covering the lens with its cap and the white object is a white 
spectralon tile which is a highly reflective Lambertian scatter, 
commonly used to calibrate HSI systems. For each >., b( n) and 
w(n) are averaged on reflectance values at column n along the 
white tile height dimension. The images shown in Figures 3(a)
(c) have been normalized. Corresponding wavelength profiles 
of the rice seeds are shown in Figure 3(d). 

IV. SPATIAL AND SPECTRAL FEATURE EXTRACTIONS 

A. Separating seed samples from background 
In the proposed system, rice seed samples need to be 

separated from background regions in order to allow the 

Fig. 4. The procedures separating rice seeds from background 

extraction of the physical properties of the grain as well 
as spectral features. However, seed segmentation is not a 
straightforward procedure because of artefacts such as shadow 
and lighting conditions. Particularly, to correctly measure 
physical properties, the seed segmentation procedure suffered 
due low spatial resolution of the hypercubes data. Thus, we 
deploy a series of image processing techniques to overcome 
these difficulties. Firstly, we consider the difference of low
band and high-band images, as shown in Figure 3(a) and 
Figure 3(c), respectively, to boost contrast. This difference 
image 1dif f differentiates between background regions and 
foreground ones (e.g., rice seed regions). A morphological 
opening operator is then applied on the difference image, 
named background image h g • As inherited from a Top-hat 
transform, the foreground image is the subtraction of 1diff 
and h g; i.e. 1fg = 11diff - hgl. An example of 1fg is shown 
in Figure 4(a). Comparing with original image at a specific 
wavelength (e.g., Figure 3(a)-(c), the shadow and artefacts in 
1 f g are eliminated. Subsequently, a thresholding operator using 
Otsu's threshold [14] is applied on 1fg. The extracted seeds 
are marked by the red boundary in Figure 4(b). 

B. Spatial Feature extractions 
Given an individual rice seed from batch samples, we 

measures spatial/morphological features. The selected features 
are similar to those presented in recent works such as [3] 
and [1] because of their effectiveness for discriminating among 
species. A morphological feature descriptor f with 6 dimen
sions is calculated as follows: 
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Fig. 5. Spatial feature extraction (a) on hyperspectral datacube; (b) on CCD 
camera. (c) Photo of a seed sample for reference 

• h: is the number of pixels inside a seed sample. 
• 12, fa: are the MajorAxisLength and MinorAxisLength 

respectively, that specify the length (in pixels) of the 
major/minor axis of the ellipse that covers the boundary 
of the sample seeds. 

• /4: is the aspect ratio j: and 
• /5 = Pe1;;.~ter, where Perimeter is number of pixels 

along the seed boundary; and Area is h feature. 
• I = F.ociDi~tance is eccentricity specified by J6 MaJorAx.sLength 

FociDi8tance which is the distance between two foci 
of the ellipse, and the major axis length. 

The features are illustrated in Figure 5(a). Note that these 
features are similar but different from those in [3]; the HSI 
camera gives a low spatial resolution for each seed (e.g., 
40 x 50 pixels) versus the corresponding images collected 
from high resolution CCD camera [3] (e.g., 630 x 900 pixels; 
shown in Figures 5(b) and (c)). This difference hinders the 
discrimination ability between the rice species when only 
spatial features are used. 

C. Spectral feature extractions 
A hyperspectral datacube contains spectral information for 

every pixel of the seed regions. For each wavelength, the 
mean normalised intensity across all pixels in the seed region 
can be computed resulting in 256 spectral features. The per 
pixel spectral profiles for one rice seed species are shown 
in Figure 3(d). As denoted in Equation (2), the raw spectral 
feature vector of a rice seed sample is a set of Y>. in which>. is 
one of 256 bands belonging a range A = 950.73 -1759.4nm. 
Figures 7(a)-(b) show the spectral features of two seed samples 
from two variates (Q5 and N97). The mean spectrum over each 
seed regions are shown in the corresponding right panels. 

The 256 spectral features of the mean normalised intensity 
of pixels in the seed lead to "Curse of Dimensionality" and 
dimensionally reduction techniques are commonly applied in 
spectral data analysis to avoid overfitting, reduce redundancy 
and co-linearity of spectral data. This also facilitates the con
struction of simple, stable and practical classification models. 
In particular, we use Principal Component Analysis (PCA) to 
transform the original data into a small number of uncorrelated 
variables. The PCA transformation is applied on the spectrum 
profile of the all the collected data: 

Fig. 6. PCA reconstruction using the first ten components. (a) Overlapping 
the original and the reconstructed profiles of a seed sample. (b) A close-up 
region of graph. Blue line is original data; red line is reconstructed data 
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Given the normalized datacube YA, the projected data in a 
PCA space is defined by: 

Y -+ f . vT(c - I/. ) A pcl,pc2, .. ,pclO· 8 >. ,.,8 (3) 

The first few principal components (PCs) can be used to 
capture most of the variability in the data reducing dimen
sionality. In our dataset, the first ten Principal Components 
(PCs) (fpc1, .• , /pclO) can reconstruct 99% original data. The 
consistency of the reconstructed data using first ten PCs 
against all of the original data is illustrated in Figure 6. In this 
paper, we therefore use the the first ten PCA-based features 
for each rice seed rather than entire spectral data. 

V. DISCRIMINANT ANALYSIS AND CLASSIFICATION 

A. Species discrimination using spectral features 
Many relevant works [1]-[3] have evaluated shape-based 

properties for identifying/separating rice seed species. How
ever, these measurements strongly depend on how the grains 
are spread on the captured surface. For example, Figure 7(a) 
- right panel shows an illustration of two seeds from the same 
species and although it was expected that the shape-based 
properties would be similar this is not the case. The positioning 
of the seed on the surface is such that a different perspective 
(side) is captured. Conversely, the shape appearance of two 
seeds from different species may be very similar, e.g. two 
seeds shown in Figure 7(b)- right panel. The benefit of 
the HSI system is that it can measure hidden information 
inside the seeds. As expected, the wavelength profiles of two 
seeds in Figure 7(a) are very similar. In the same way, the 
wavelength profiles of the seed samples from two different 
species in Figure 7(b) are separable. Statistically speaking, 
the wavelength profiles of each species is averaged based on a 
hyperspectral datacube collected from 108 seed samples. Pair 
comparisons of the spectral profiles between one species with 
others are shown in Figures 8(a)-(e). 
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Fig. 7. Discriminant analysis examples. (a) Two seeds of same species. (b). Two seeds from different species. On (a)-(b) Left panel: detailed wavelength 
profiles; Right panel: Averaged wavelength profiles. Photos of the rice seed samples for references 

Fig. 8. Comparison wavelength profiles of a species (Q5) with others. The analysis utilized the hyperspectral datacubes of six examined rice seed species 

B. Building Classifiers 

Utilizing the spatial and spectral features, as well as their 
combination, we build classifiers that come from two different 
classification methods. 

A Random Forest classifier contains many decision trees, 
and each tree is grown from a bootstrap sample of the response 
variables. The best split is selected from a random subset of 
variables at each node of the tree and then the tree grows to 
the maximum extent without pruning. Prediction can be made 
from new data by aggregating the outputs of all trees. RF is 
a fast and effective algorithm for dealing with a large amount 
of data. RF has shown the advantages that it reduces variance 
and achieves comparable classification accuracy. In this study, 
the number of the decision trees is set to 500. 

Support Vector Machine is a widely used supervised sta
tisticallearning algorithm. SVM shows advantages in dealing 
with small sample, linear and high dimensional data. SVM is 
based on the structural risk minimum (SRM) and SVM has 
high generalization capacity and could provide a flexible and 
easy-to-compute solution. Selection of the kernel function in 
SVM models has a significant influence in model performance, 
and in this study, the commonly used Radial Bias Function 
(RBF) is employed as kernel function. 

VI. EXPERIMENTAL RESULTS 

We evaluate the performance of each set of features (spatial, 
spectral individually, and their combination) on the collected 
dataset, as described in Section III-B. The feature extraction 
procedures were implemented using Matlab on a PC Core is 
3.lOGHz CPU, 4GB RAM. The LibSVM library [15] and 
a Random Forest Library [16] were employed to build the 

classifier models. To validate the proposed method, leave-p
out-cross-validation was utilized. For each classifier, 50 seed 
samples were collected randomly as positive samples, the 
negative samples were collected in a balanced fashion from 
all other species so that total negative samples are equal 50 
(in other words, 10 from each other species). To evaluate the 
performance, two criteria measures are defined: 

tp tp 
Precision(P) = f ,and Recall(R) = f (4) tp+p tp+n 

where tp is the number of true positive, fp is the number of 
the false positive, tn is the number of true negative and fn 
is the number of false negative. The performance evaluation 
results are obtained by averaging over 10 runs. 

The performance of the classifiers using only the spatial 
features (f = iI, .. , f6) is given in Table I. As shown, the RF 
classifier is slightly better than the SVM and the best perfor
mance is achieved with the LL species. Utilizing all the 256 
spectral features, Table IT shows better performances compared 
to spatial features especially for BT07, K DI8, LL, N97. 
Combining the spatial and all the spectral features together, 
a feature vector consists of 256 + 6 dimensions. The results 
for this combination are shown in Table III. The performance 
increases; from 77-78% precision for spatial only and spectral 
only features to 81% when combined. Finally, using the 6 
spatial features along with the 10 principal components to 
reduce the dimensionality of the spectral data and over-fitting 
issues higher performance is achieved with precision at 84%. 
These evaluations confirm the benefits of the features extracted 
from a HSI system. 
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mance is achieved with the LL species. Utilizing all the 256 
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to spatial features especially for BT07, K DI8, LL, N97. 
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issues higher performance is achieved with precision at 84%. 
These evaluations confirm the benefits of the features extracted 
from a HSI system. 
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TABLE I 
SPATIAL FEATURE PERFORMANCES 

Speices SVM RF 
P Recall F-Measure P Recall F-Measure 

BCl5 0.77 0.71 0.74 0.8 0.8 0.8 
BT07 0.73 0.73 0.73 0.78 0.74 0.76 
KD18 0.7 0.75 0.72 0.71 0.7 0.7 

LL 0.81 0.71 0.76 0.89 0.81 0.85 
N97 0.68 0.55 0.61 0.72 0.62 0.67 
Q5 0.61 0.56 0.59 0.7 0.71 0.7 

Average 0.72 0.67 0.69 0.77 0.73 0.75 

TABLE II 
SPECTRAL FEATURE PERFORMANCES 

SVM RF Speices P Recall F-Measure P Recall F-Measure 
BC15 0.75 0.27 0.39 0.67 0.66 0.66 
BT07 0.98 0.53 0.69 0.86 0.83 0.84 
KD18 0.91 0.6 0.72 0.82 0.85 0.83 

LL 0.69 0.91 0.78 0.82 0.82 0.82 
N97 0.78 0.58 0.67 0.8 0.79 0.79 
Q5 0.65 0.43 0.52 0.73 0.74 0.74 

Average 0.79 0.55 0.63 0.78 0.78 0.78 

VII. CONCLUSION 

This paper describes a HSI system supporting rice seed 
varietal purity inspection. The proposed system combines a 
hardware camera setup and a tool for extracting features from 
the collected hyperspectral datacubes. We have confirmed that 
by taking advantage of a HSI system on both spatial and spec
tral features, we achieve very promising results on eliminating 
varietal impurity of species from large seed samples. 

Although the precision obtained from spatial features is 
lower compared to that reported in [3] it must be noted that the 
imaging acquisition in [3] is a high resolution camera to extract 
shape properties of the segmented seeds and consequently 
shape features were described more precisely compared to 
the HSI system. Despite this, HSI system provides additional 
discrimination capability to the shape descriptors as shown 
from the results in this study and this suggests that a new 
imaging modality can be used to improve performance further. 
Going forward, we propose to combine data from registered 
high resolution images from a high resolution CCD camera 
with spectral images from HSI system. Moreover, we believe 
that utilizing the spectral data at each pixel rather than mean 
spectrum on all of the pixels of the seed regions can be 
useful to investigate chemical features of a seed and therefore, 
discrimination of species would improve. 
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TABLEll 
SPATIAL AND FULL BANK SPECTRAL FEATURE COMBINATIONS 

Speices SVM RF 
P Recall F-Measure P Recall F-Measure 

BCl5 0.75 0.47 0.58 0.71 0.72 0.71 
BT07 0.81 0.66 0.73 0.87 0.85 0.86 
KD18 0.76 0.73 0.74 0.86 0.87 0.86 

LL 0.71 0.56 0.63 0.88 0.84 0.86 
N97 0.81 0.48 0.6 0.8 0.81 0.8 
Q5 0.65 0.51 0.57 0.76 0.79 0.77 

Average 0.75 0.57 0.64 0.81 0.81 0.81 

TABLE IV 
SPATIAL AND 10 PCA-BASED FEATURES COMBINATIONS 

Speices SVM RF 
P Recall F-Measure P Recall F-Measure 

BCl5 0.73 0.69 0.71 0.78 0.83 0.81 
BT07 0.8 0.69 0.74 0.87 0.89 0.88 
KD18 0.77 0.72 0.74 0.92 0.89 0.9 

LL 0.8 0.73 0.76 0.89 0.87 0.88 
N97 0.73 0.53 0.61 0.81 0.82 0.82 
Q5 0.62 0.55 0.58 0.74 0.75 0.75 

Average 0.74 0.65 0.69 0.84 0.84 0.84 
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