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PAPER

Controlling the Display of Capsule Endoscopy Video for Diagnostic
Assistance

Hai VU†a), Nonmember, Tomio ECHIGO††, Ryusuke SAGAWA†, Members, Keiko YAGI†††,
Masatsugu SHIBA††††, Kazuhide HIGUCHI††††, Tetsuo ARAKAWA††††, Nonmembers,

and Yasushi YAGI†, Member

SUMMARY Interpretations by physicians of capsule endoscopy image
sequences captured over periods of 7–8 hours usually require 45 to 120
minutes of extreme concentration. This paper describes a novel method
to reduce diagnostic time by automatically controlling the display frame
rate. Unlike existing techniques, this method displays original images with
no skipping of frames. The sequence can be played at a high frame rate
in stable regions to save time. Then, in regions with rough changes, the
speed is decreased to more conveniently ascertain suspicious findings. To
realize such a system, cue information about the disparity of consecutive
frames, including color similarity and motion displacements is extracted.
A decision tree utilizes these features to classify the states of the image
acquisitions. For each classified state, the delay time between frames is
calculated by parametric functions. A scheme selecting the optimal pa-
rameters set determined from assessments by physicians is deployed. Ex-
periments involved clinical evaluations to investigate the effectiveness of
this method compared to a standard-view using an existing system. Results
from logged action based analysis show that compared with an existing
system the proposed method reduced diagnostic time to around 32.5 ± 7
minutes per full sequence while the number of abnormalities found was
similar. As well, physicians needed less effort because of the systems effi-
cient operability. The results of the evaluations should convince physicians
that they can safely use this method and obtain reduced diagnostic times.
key words: capsule endoscopy, color similarity, motion displacements,
video display rate control.

1. Introduction

Capsule Endoscopy (CE) involves a swallowable endo-
scopic device that is propelled by peristalsis through the
GastroIntestinal (GI) tract. Through its image capturing
ability, CE enables non-invasive examinations in the GI tract
that are difficult to carry out by conventional endoscopic
techniques. CE has been reported [1]–[3] to be particularly
successful in finding causes of gastrointestinal bleeding of
obscure origin, Crohn’s disease, and suspected tumors of
the small bowel. The clinical products, M2A and PillCam
capsule [4], developed by Given Imaging Ltd, Israel, have
become widely used with over 500,000 patients examined
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worldwide [5]. In a typical examination, CE takes approxi-
mately 7–8 hours to go through the GI tract for acquisition
of images at a rate of 2 fps. The sequence obtained thus has
around 57,000 images that can be used for reviewing and in-
terpretation. With such a large number of images, an exam-
ination is time consuming and constitutes a heavy workload
for physicians.

To reduce diagnostic time, different viewing modes for
displaying images are provided in the RAPID Reader appli-
cation [6], a CE annotation software developed by the cap-
sule manufacturer. Dual-view mode reduces analysis time
by concurrently displaying two consecutive frames. Quad-
view reshapes four consecutive images into one. Automatic-
view combines successive similar images to display rep-
resentative frames. Quick-view mode allows a fast pre-
view by showing only highlight images. The combina-
tion of dual-view and automatic-view, called a standard-
view, is a common viewing mode for physicians. Following
medical reports [2], [3], [7], [8] and a specific report by [9]
that included the examination of 50 sequences, the average
time taken to examine a sequence in a standard-view is re-
ported to be approximately 76 ± 30 minutes. In quad-view
mode, the average diagnostic time can be reduced to around
37±13.4 minutes/sequence [10]. Quick-view allows preview
sequences of around five minutes; however, in the applica-
tion it is recommended that additional evaluations are re-
quired to confirm that there has been no loss of abnormal
regions.

Although convenient methods that reduce diagnostic
time for physicians are useful, they have the constraint that
images must be displayed in the original/natural shape with-
out any skipping of frames. This is because there are var-
ious challenges in the examination of CE videos that re-
quire careful attention, even by experienced physicians. For
example, because of movements of the CE device caused
by natural peristalsis, images are captured from different
viewing directions that can make even normal anatomy look
strange. The distorted images in quad-view mode can be
difficult to interpret. An abnormality that may only be seen
in a single frame, or in a few frames [3], is not easily identi-
fiable in quick-view mode and may not appear if that image
were to be skipped.

Many video analysis technologies to reduce the atten-
tion time for video editors, as well as to achieve reductions
in the storage and transmission of video sequences, have
been proposed. A survey [11] has categorized two kinds of
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video summarization: the first technique is to select a small
number of still images as key frames generated from scene
change detection algorithms. Some tools [12]–[15] aim to
segment data semi-automatically into domain objects that
are meaningful to users for tasks related to video searching,
browsing or retrieving. The second technique uses moving
images to skim a video sequence. Some multimedia appli-
cations such as VAbstract [16] and MoCa Abstracting [17]
have been developed to provide users with an impression
of the complete sequence or highlights containing the most
relevant parts of the original video. [18] proposed a method
called “video fast forward”, which aims to browse desired
clips more quickly as opposed to using key frame-based
summaries. [19], [20] describes a concept called “constant
pace”, that provides for varying the display speed by mo-
tion activity and semantic features such face or skin color
appearance, speech, and music detection. However, consid-
ering the requirements for the display of CE images, intu-
itively, these techniques appear unsatisfactory.

In this scenario, the conditions of image acquisition are
the important cues. As CE involves a passive device, its
states during the capture of images depend on the motility
patterns in the GI tract. The video sequence can be played
at high speed in a stable state to save time, and the speed
then decreased during rough changing states to more con-
veniently help identify suspicious regions. This fits with an
opinion discussed in [3] that “it is probably unwise to read
all the images at the fastest of the three available speeds” and
the fact that physicians usually stop and inspect sequences
frame-by-frame to recognize suspicious regions. Although
physicians can adjust the display speed from 5 to 25 frames
per second, changing this speed manually can break an ex-
aminers concentration for finding abnormal presentations.
Therefore, in this paper, we propose a method to auto-
matically control image display that is built upon the idea
that durations for displaying frames (herein called the delay
time) are adapted according to the different conditions gov-
erning image acquisition. It is notice that the proposed sys-
tem is designed to reduce diagnostic time without the loss
of any abnormal region under the same conditions as the
existing system, assistant functions for automatically recog-
nizing abnormal regions are not included. A comparison be-
tween images displayed according to the proposed method
and those displayed at a fix frame rate is shown in Fig. 1.
The contributions made by this article are as follows:

- The study proposes a method that effectively assists
physicians by reducing the time for CE videos diagnoses.
The main advantages are that entire sequences are displayed
in the original shape without skipping any frames; thereby
enabling the inspection of all data. Experimental results
confirm that the diagnostic time is reduced to around 32.5±7
minutes per full sequence. Compared with a standard-view
using the existing system, Rapid Reader Version 4, the pro-
posed method is 10 minutes less while the number of abnor-
malities found are similar under both systems. As well, the
proposed system requires less effort because of its efficient
operability.

Fig. 1 Image display under the proposed method using adaptive display
rate (middle), controlling by the disparity of images (right side) versus the
conventional method with its fix frame rate (left side).

- To address issues of subjectivity in reducing diagnos-
tic times, a series of clinical evaluations are conducted. We
utilize a logged action based analysis to validate the pro-
posed techniques. These results should convince physicians
that they can safely use this approach in routine clinical
work and still obtain reduced diagnostic times. Further-
more, to the best of our knowledge, it is the first time the
detail actions of physicians are analyzed within the com-
plete diagnostics procedure in respect to the application of
CE. Logged actions provide comprehensive data for a bet-
ter understanding of the behavior of physicians. This can be
deployed for further research into areas such as appropriate
education systems or assistance in recognizing the presence
of abnormalities.

The rest of the paper is organized as follows: Section 2
introduces CE image properties and the techniques of fea-
ture selection and extraction. Section 3 describes a method
for defining and classifying the states of image acquisition.
Section 4 explains the functions used to compute the de-
lay time and the techniques used to precisely control image
display. In Sect. 5, we investigate the effectiveness of the
proposed method through clinical evaluations. Finally, in
Sect. 6, we conclude as well as discussing and suggesting
areas for future research.

2. Capsule Endoscopy Image Properties and Feature
Extractions

2.1 CE Image Properties and Feature Selections

The CE device is 11 mm by 26 mm, includes a CMOS sen-
sor, a short focal length lens, four LED illumination sources
and an antenna/transmitter (Referring to [2] and [7] for tech-
nical specifications). With its pill shape and small size, the
CE device is easily ingested and then passed through the GI
tract. Image data are transferred by radio transmission to a
recording unit before being uploaded to a workstation for
diagnosis. Image features include a 140o field of view, 1 to
30 mm depth of view, 256 × 256 pixels and 24 bit color in
RGB space.

CE images usually present homogeneous regions in-
side the GI tube. Similar to images acquired by conventional
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endoscopy devices, CE images of the digestive organs show
differences in texture, shape or color features. Because of
the reflecting activities of the digestive system, the regions
of the inner GI wall not only span continuous frames (in
stationary phase) but also appear separately in an individual
frame (in contraction situations). However, the visibility in
CE images is sometimes limited because of the presence of
intra-luminal gases, water bubbles, food or bile. To char-
acterize the meaning of the various CE images, previous
works have selected different image features depending on
their goal. For example, to segment digestive organs, color
features are favored in the works of Mackiewicz et al. ([21],
[22]) and Coimbra et al. ([23], [24]). For calculating differ-
ent plurality images, Glukhovsky et al. [25] use the average
intensity of pixels or pixel clusters. To detect contractions in
the small bowel, the gray-level intensity and edge features
of intestinal folds are used in the works of Vilarino et al.
([26], [27]) and Spyridonos et al. ([28], [29]). To produce a
map that represents the GI’s surface in smooth-continuous
frames, P. Szczypinski et al. ([30], [31]) estimate the mo-
tion displacement between frames. For the purpose of our
investigation, to precisely control the image display, image
features are selected so that the perceptual disparity of con-
secutive frames is as precise as possible. From observations
in experiments, the changing of color features is useful for
extracting global differences between images, whereas mo-
tion displacements are distributed unevenly in a small area
or imply just local information. Therefore, we mainly focus
on combinations of these features because changes in con-
secutive frames can adequately discriminate both global and
local information.

In [25], Glukhovsky et al. introduced a framework for
controlling the in vivo camera capture and display rate.
After evaluating differences of the multiplicity of frames,
they suggested an empirical database or a look-up table so
that the display rate is varied accordingly. However, they
leave unresolved the method needed to develop this type
of database, look-up table, or a specific mathematical func-
tion. In our work, if the delay time between two consecutive
frames is denoted by Dt, we express the correlating function
between Dt and the disparity of images by:

Dt = Θ( f (.), ξskill, ξsystem) (1)

where f (.) is a function to estimate perceptual differences
between frames by color similarity and motion displace-
ment. In preliminary versions of this study ([32]), we de-
scribed the methods for extracting these image features. The
sections below express in some depth the techniques used
for the implementation of the proposed method.

2.2 Features Extractions

2.2.1 Color Similarity Extractions

Several methods to extract color features have been pro-
posed for content-based image retrieval (CBIR). These in-
clude color histograms [33], color moments and color coher-

ence vectors [34] and color correlograms [35]. Benchmarks
and capacity color histograms have been reported in [36]
and [37]. These reports show that color histograms are ro-
bust through a trade-off between performance and computa-
tion time. Therefore, the use of color histograms is a promis-
ing way of quickly indexing a large number of frames, such
are found in a CE sequence.

Color descriptions can utilize different color spaces
such as RGB or HSV. HSV color space is good for detect-
ing abnormal regions because it offers improved perceptual
uniformity. However, it is not so good for detecting time-
varying color changes because the color space is not stable
in a dark scene. Furthermore, there are no reasons to use
different color spaces against the color spaces of the orig-
inal input and display, respectively. From preliminary ex-
periments using a bright scene, RGB and HSV color spaces
showed a high correlation for the two similarity waveforms.
Therefore, so that it is unnecessary to transform to another
color space, the original color space of RGB is used for color
histogram indexing.

In our implementations, CE images are divided into
small blocks and a histogram is computed for each block.
Block size value was decided heuristically through experi-
ments with various block size values. With a small block
size, image differences show sensitivity to the changes,
whereas a too large block size can lose the changes in impor-
tant regions. For a reasonable selection, the image is divided
into Nblk = 64 blocks with a predetermined 32 × 32 pixels
block size. The color histogram method [33] is applied to
each block by dividing R, G, B components into a number
of bins Nbins = 16. The distance of the local histograms is
computed from the L1 distance:

Dblk(i)

=

Nbins∑
k=1

(|Hn
R,k − Hn+1

R,k | + |Hn
G,k − Hn+1

G,k | + |Hn
B,k − Hn+1

B,k |)

(2)

where H is the histogram of each color component for block
i and between frames < n, n + 1 >.

Block matching between frames < n, n + 1 > is de-
cided using a selected threshold value. The accumulation
of matching blocks reveals overall similarity between two
frames:

S im(n) =
1

Nblk

Nblk∑
i=1

simblk(i)

With

{
simblk(i) = 1 if Dblk(i) ≤ Threshblk

simblk(i) = 0 otherwise
(3)

Using (3), color similarity (S im(n)) is normalized from
zero to one, with the maximum value indicating the best
match and the minimum value indicating that with the most
difference. Additionally, the maximum distance between
blocks Dmaxblock(n) = maxi{Dblk(i)} is also noted; this dis-
tance is particularly robust in situations when two images
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have some common regions. In contrary situations, the min-
imum block Dminblock(n) = mini{Dblk(i)} is used to ascertain
if the regions of the images are mostly different. We discuss
utilizing these values in Sect. 3.

2.2.2 Motion Displacement Estimations

Using color similarity, the disparity between consecutive
frames was evaluated in terms of global information. Mo-
tion features are cue information for representing the local
displacement of adjacent frames. Motion is usually repre-
sented by set trajectories of the matching points of local
features. In this study, the Kanade-Lucas-Tomasi (KLT) al-
gorithm was utilized to estimate the displacement because
it showed reliable results that emphasized [38] the accuracy
and density of measurements for real image sequences. As
well it has been reported to be successfully applied to con-
ventional endoscopic images [39], [40]. This algorithm is a
feature-tracking procedure developed for video by Tomasi
and Kanade [41]. It is based on earlier work by Lucas and
Kanade [42]. Extensions of the KLT algorithm [43] include
support for a framework of a multi-resolution scheme [44]
and constraints of affine transformation [45].

First, images are smoothed using a 2D Gaussian filter
with standard deviation σ = 1.5. Applying a pre-filter be-
fore detecting good feature points is effective for improving
the signal-to-noise ratio and reducing the non-linear compo-
nents of any image that might tend to degrade the accuracy
of subsequent gradient estimations. Smoothing also helps
attenuate temporal aliasing and quantization effects in the
input images.

For each pair of consecutive frames, the KLT algorithm
automatically selects good features from the first image. A
good feature is one that can be tracked throughout the fol-
lowing frames. The selection of good features is based on
the requirement that the spatial gradient matrix computed
on the corresponding frame location is above the noise level
and is well conditioned. As defined [38], the gradient matrix
G is computed by:

G =
∫
ω

g(gT )ωdx =

∑
i, j

[
gradx(i, j)∗gradx(i, j) gradx(i, j)∗grady(i, j)
gradx(i, j)∗grady(i, j) grady(i, j)∗grady(i, j)

]

(4)

To compute the gradient in the x and y direction of
the images, a Gaussian 2D kernel, with σ = 1.0 is ap-
plied. The gradient matrix is built from a patch window
ω = 29 × 29 pixels size. The noise requirement implies that
both the eigenvalues of matrix G must be sufficiently large,
while the conditioning requirement means that the eigenval-
ues cannot differ by several orders of magnitude. To ensure
that the noise requirement is satisfied and well conditioned,
the patch window ω is accepted as a good feature if the
two eigenvalues (λ1, λ2) of matrix G satisfy the condition:
min(λ1, λ2) > λ, where λ is a predetermined threshold. A

lower bound of λ is given by the distribution of elements of
the gradient matrix with constant intensity, while the upper
bound obtained is an area with variable intensity. In prac-
tice, to determine a good feature point we use λ = 800,
chosen as the halfway point between the two bounds.

The process of selecting a good feature point finishes
when the condition is reached by a certain number of points
(Npoints = 80) or distances between two good features are
no smaller than a predefined value (7 pixels). With many
homogeneous regions in endoscopic images, the trade-off
against the computational cost of the number of good fea-
ture points required is not large and the minimum distance
between them is not particularly small.

A computation framework for the measurement of vi-
sual motion also showed robust results when deployed by a
multi-resolution scheme [44] in a coarse-to-fine manner. In
our implementation, estimations are first produced at coarse
scales by reducing the original size four fold; where the
noise is assumed to be less severe, with velocities of less
than 1 pixel/frame. These estimates are then used as the ini-
tial guesses for a finer scale (by restoring the original size of
the images) to compensate for larger displacements.

The good features are then tracked in a second image
at each scale using Newton-Raphson iterations to minimize
the differences between the windows in successive frames.
The tracking process stops when either the number of iter-
ations (predefined value = 10) or the minimum distance is
above a selected threshold value or the residue of patch win-
dows is too large. Figure 2 shows the motion fields for some
frames in a sequence that includes 16 continuous frames
(upper panel). The results of frames 1 to 6 and 8 to 14 show
that motion estimations are clear and realizable (as shown
in Fig. 2 a and Fig. 2 c. At position (b) (frames 6 and 7) and
(d) (frames 14 and 15) the results of the motion fields are a
mess (as shown in Fig. 2 b and Fig. 2 d). These problems are
resolved by the combination of color similarity, as described
in Sect. 3.

Some methods for evaluating displacement from the
motion field have been proposed. For example, [19] used the
average magnitude of motion vectors. However, as shown in
Fig. 2, the dominant movement is in an unrecognizable di-
rection for endoscopic images so using an averaged value
here is not feasible. Therefore, to evaluate motion signal
strength between two adjacent frames < n, n + 1 >, in this
study the maximum magnitude of motion vectors notation
Motionorig(n), is used.

To combine the color similarity feature, motion dis-
placement is normalized in the range of [0, 1]. To avoid any
bias resulting from non-realizable cases, the Z-Score nor-
malization (Gaussian normalization) method [46] is used.
From Motionorig data, the mean μk and standard deviation
σk of a full sequence is calculated. The Motionorig(n) of a
frame number n is normalized by:

Motionnorm(n) =
Motionorig(n) − μk

3σk
(5)

The probability of normalization by (5) being in the



516
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

Fig. 2 A continuous image sequence of 16 frames (upper panel). Results of motion estimations at
some positions are illustrated (bottom panel). At (a) and (c), the results of the motion fields are reliable,
while at (b) and (d) the motion fields are not confident.

range of [−1, 1] is approximately 99%. In practice, all val-
ues can be considered within the range of [−1, 1] by map-
ping the out-of-range value to 1 or −1. A shift operator will
transform values to the range of [0, 1] by:

Motion(n) =
Motionnorm(n) + 1

2
(6)

The procedures for feature extractions were performed
off-line on a Pentium IV 3.2 GHz, 2 GB RAM computer.
Average computational cost for a full sequence was approx-
imately 105 minutes, including 30 minutes for color simi-
larity and 75 minutes for motion estimations.

3. Classification Scheme

Studies in the field of gastrointestinal motility show that
motility patterns in the GI tract include two types of con-
tractions. One is peristalsis where muscles contract in a
synchronized way to move food in one direction. The other
is segmentary contractions where muscles in adjacent parts
squeeze to mix the contents but do not move the food [47].
Motility patterns are known to occur at infrequent intervals
and vary depending on the phase of the contraction as well
as the presence of various malfunctions. Recognizing motil-
ity patterns from CE image sequences is still a difficult task.
However, the mechanisms reveal an idea for classifications
into states of changes between two consecutive frames that
correspond to the conditions of image acquisitions. Here,
four states of image acquisitions can be defined. Descrip-
tions of these states and a scheme for classifications based
on the extracted image features are discussed below.

3.1 Descriptions of the States of Image Acquisition

For convenience, the four states corresponding to changes in
contractions in the small bowel are presented in Fig. 3 a–d:

- State 1: Images are captured in a stationary condi-
tion. This state appears when the GI motility is in a stable
phase. Thus, the position of capsule remains almost still.
Figure 3 a shows 8 frames extracted from 195 successive
frames, which are almost all the same. The adjacent im-
ages have high color similarity and motion displacements
are small or nearly zero. This state impacts on the control
of the display images by playing sequences at high speed to
save time. When continuous frames are exactly the same,
the display speed can reach a maximum value that can be
set according to the limitations of the display system’s hard-
ware.

- State 2: The CE device captures images when it
moves with just gradual transitions and there is no change
in the viewing direction. This state corresponds with mo-
ments when the peristaltic contractions are strong enough to
move the capsule by pushing it, but there is no effect from
the segmentary contractions that mix or sweep the contents
in the GI tract. Figure 3 b shows some frames at the be-
ginning, middle, and the end parts of 52 continuous frames,
being consecutive frames with small movements. There are
not many differences in the changing colors and so the mo-
tions can be confidently estimated. In this state, the display
of images is controlled at a medium speed so that observa-
tion is possible.

- State 3: Images are captured when the capsule under-
goes larger movements. The strong contractions that sweep
or mix the contents are considered to cause this state. As
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Fig. 3 (a–d) States of image acquisition. (e) A comparative differences between images for cor-
responding states. Pixel values at (i, j) in each sub-figure is plotted by maximum values from dif-
ferencing of adjacent images < t, k > shown in (a)–(d). The image differencing is calculated by
gt,k

i, j =
∑

R,G,B | f t
i, j− f k

i, j |. The gray scale bar presents image differencing with a brighter intensity showing
a larger change.

shown in Fig. 3 c, in 8 of 16 continuous frames the move-
ments in successive frames are larger and clearer than in the
frames in Fig. 3 b. Images in this state would be displayed
over a longer time so that physicians are able to clearly view
them and focus better on the changing regions.

- State 4: This state occurs when there are brief bursts
of contractions or giant migrating contractions. This type
of contraction makes the capsule suddenly change direction
and move. Figure 3 d shows images captured in this state
with 7 continuous frames that are essentially different. Color
similarity is minimal, and the motion vectors can not be con-

fidently detected. The delay time is thus increased to the
maximum to enable observations to be as easy as possible.

3.2 Decision Tree for Classifying States

With natural characteristics of GI motility, the states clas-
sification task is faced with the problem that a reasonable
performance can only be achieved by using of a very large
design set for proper training; probably much larger than
the number of frames available. Such a difficulty can be
overcome based on the above descriptions of the states in
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Fig. 4 A decision tree for classifying states.

which the color similarity is the most discriminating feature
for separating global changes (e.g., stationary states (State
1) vs. abrupt changes (State 4)), while motion displacement
is clearly used for discriminating small adjustments (e.g.,
stationary states (State 1) vs. gradually change (State 2)).
With such discriminations of feature subsets, a “divide and
conquer” principle, or a decision tree classifier, is usually
applied. For classifying an unknown pattern into a class in
successive stages, a decision function at a certain stage can
perform rather well by using the discriminating feature [48].
Therefore, a decision tree as shown in Fig. 4 is proposed. In
this, color similarity S im(n), maximum block Dmaxblock(n)
and minimum block Dminblock(n) are defined in Sect. 2.2.1;
motion displacement Motion(n) is calculated by (6).

Following this classifier, State 1 is satisfied if S im(n)
is larger than Thresh1 and Dmaxblock(n) is smaller than
Thresh2. Because when Thresh1 is large and Thresh2 is
small enough, the combination of these conditions means
that all regions in the two images are stable. To evalu-
ate gradual transitions of State 2, Motion(n) is larger than
Thresh4 (which separates the stationary State 1); most
regions are similar (S im(n) > Thresh1) and differences
only appear in some regions by Dmaxblock(n) being larger
than a predefined threshold (Thresh2). Similarly, State
3 and State 4 are defined as relying on Dminblock(n) and
Motion(n) compared with Thresh3 and Thresh5. Particu-
larly, if Dminblock(n) is larger than Thresh3, it means that the
abrupt changes that cause errors in the motion estimations
result in the motion being assigned to State 4 (the motion
fields in the cases in Fig. 2 b and Fig. 2 d are avoided).

Note that following the classification scheme, motion
features for State 1 and State 4 are always assigned 0 and 1,
respectively. As such, no motion estimations are required in
these cases. Thus, computational cost is reduced because
motion extractions are only implemented for State 2 and
State 3.

3.3 Selecting the Optimal Threshold Values

A combination of threshold values of the decision tree,
named as a parameter set. The optimal parameter set was
decided through an empirical study. The idea of this task
is that we establish a series of parameter sets to enable an
exhaustive search among the predetermined candidates to
ascertain a reasonable decision tree. The steps taken in the
empirical study were as follows.

First, a training data set that included one thousand
frames was selected from small bowel regions. These re-
gions were selected because they are usually the ones fo-
cused on by examining doctors. The training data set was
build without any bias for the special positions along the
small bowel. The image features of the training data were
extracted and organized into histograms. For example, each
curve in Fig. 5 a shows color similarity distributions for
States 1–4, and Fig. 5 b shows motion displacement distribu-
tions for the State 1 and State 2. Then the prototypes of these
distributions are plotted in Fig. 5 c and Fig. 5 d, respectively.
Because the center of mass of these distributions discrim-
inate between the two groups of data shown, they suggest
estimations of the threshold values. For example, Thresh1
is determined by the center of mass of the similarity curves
of State 1 and State 2. Similarly, the center of mass of the
motion curves in (Fig. 5 d) suggest the Thresh4 value, that
separates two groups State 1 and State 2. The threshold val-
ues decided from training data set is named as a parameter
set Type 1.

Based on the values for Type 1, the threshold values can
be moved around the center of mass in the prototype figures.
We defined two other parameter sets, Type 2 and Type 3. The
values for Type 3 were determined so that a large number
of frames belonged to States 1 and State 4 (approximately
larger than 10% of data taken from the corresponding states
in Type 1). Unlike Type 3, the Type 2 values were decided so
that the number of frames in States 1 and State 4 were small
(less than 13% of corresponding states in Type 1). Exam-
ples of three values of Thresh1 and Thresh4 are marked by
vertical lines in Fig. 5 c and Fig. 5 d. A series that includes
three parameter sets are established in Table 1. We searched
for the candidate utilizing the satisfaction evaluations of the
examining doctors, as described in the second step below.

Thirty sequences of 90 minutes in length are selected
and divided into 10 groups with each group including 3
sequences. Four physicians from the Graduate School of
Medicine, Osaka City University, Japan, were asked to view
all of the sequences in a certain group. The parameters
sets were assigned randomly to evaluation sessions with a
constraint that no type was selected twice in a group. For
each evaluation, seven levels: Poor, Quite Poor, Fair, Fairly
Good, Good, Very Good, Excellent, corresponding to scores
from 1 to 7, were used to assess the physicians’ satisfaction.
Table 2 shows the total scores and experience examining CE
image sequences of the examining doctors. From these data,
Type 3 was selected as the optimal parameter set because it
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Fig. 5 (a) Distributions of color similarity for States 1–4 and (b) of motion displacement for State 1
and State 2 in the empirical study. The corresponding prototypes are plotted in (c) and (d). The center
of the mass decides the threshold values. Vertical lines in (c) and (d) are different values of Thresh1
and Thresh4 in three types of parameters sets.

Table 1 Predetermined threshold values for each parameters set.

Para. set Thresh1 Thresh2 Thresh3 Thresh4 Thresh5

Type 1 0.47 0.4 0.6 0.3 1

Type 2 0.7 0.2 0.7 0.2 0.7

Type 3 0.3 0.6 0.5 0.4 0.8

Table 2 Total scores of assessments by the examining physicians to se-
lect the optimal parameters set.

Para. set MD. A MD. B MD. C MD. D Avg.

Experiences* 115 87 121 15

Type 1 49 51 51 53 51

Type 2 48 53 59 50 52.5

Type 3 53 51 62 51 54.25

*Experiences of the examining doctors by total CE sequences examined
up to the evaluation time.

had the highest score (by consensus of the examining doc-
tors). Moreover, in terms of diagnostic experience, MD.A
and MD.C, who were more experienced than other doctors,
also gave higher scores to the Type 3 parameter set.

4. Calculating Delay Time and Controlling Image Dis-
play

4.1 Delay Time Functions

Delay time was defined in a general form in (1) (Dt =

Θ( f (.), ξskill, ξsystem)). The sections below construct the de-
tailed components of this definition.

The function f (.) can be evaluated by adopting a
method that queries the similarity/dissimilarity of images
in a CBIR system. Given a query, the overall simi-
larity/dissimilarity between the query and an image in a
database is obtained from a combination of individual fea-
tures S ( fi) as below:

f (.) =
∑

i

wiS ( fi) (7)

where the coefficients wi are the weight of the features.
The coefficient ξskill indicates if a physician is accus-

tomed to viewing such sequences, this is called the skill co-
efficient. This coefficient is treated differently for each state.
In State 1, images are still so the skill level does not impact
on the delay time or it is the same irrespective of the skill
level. In State 2 and State 3, the skill coefficients are linear
coefficients corresponding to different images that gradually
change. In State 4, with abrupt changes, the impact of the
skill level on the delay time is an additional value. Thus,
combinations of skill level and the disparity of the image
for each state are defined by:
- For State 1, without ξskill:

�t =
∑

i

wiS ( fi)

- For State 2 and State 3, ξskill is a linear coefficient:
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Fig. 6 (a) Results of the classifications of an example sequence. (b) “Jumping” exists between the
delay time of State 1 (P1) and State 2 (P2) at the intersection of two planes.

�t = ξskill ∗
∑

i

wiS ( fi) (8)

- For State 4, ξskill is an additional value:

�t =
∑

i

wiS ( fi) + ξskill

Assuming that the delay time is linearly proportional to �t,
the function Θ to calculate Dt can be determined by:

Θ = r�t + ξsystem (9)

where r is a monotone of a non-increasing value for each
state.

The coefficient ξsystem is also added to (9) to ensure that
the delay time function is adaptive to various display system
platforms. In another expression, by combining (8) and (9),
a delay time Dt between frames < n, n+1 > can be computed
by one of the parametric functions below:
- For State 1:

Dt = A1(1 − S im(n)) + A2Motion(n) + ξsystem

- For State 2 and State 3:

Dt = [B(1 − S im(n)) + (1 − B)Motion(n)]ξskill + ξsystem

(10)

- For State 4:

Dt = D1(1 − S im(n)) + D2Motion(n) + ξskill + ξsystem

where S im(n) and Motion(n) are calculated by (3) and (6),
respectively. The coefficients < A1, A2, B,D1,D2 > are mul-
tiplied by monotone r and the weights of the selected fea-
tures.

In term of variability in delay time values, (10) sepa-
rately defines the functions for each state, while the classifi-
cation scheme suggests that a principle of continuity exists
between states. For example, Fig. 6 a shows the results of the
classifications in which Thresh4 (motion feature) defines a
border between State 1 and State 2. The assumed results of
the corresponding delay time are expressed in Fig. 6 b, there
are “jumping” points at the intersection of two planes P1

Fig. 7 Distribution of the delay time calculated from the motion dis-
placement and similarity features of a sequence.

and P2, that contain delay time values of State 1 and State
2, respectively. Thus, a constraint that ensures “jumping”
between states occurs smoothly must exist. This constraint
intuitively creates ties between parameters A1, A2, B, D1 and
D2 in (10). To find the relationships between them, analytic
geometry is solved through the intersection of two straight
lines L1 and L2, in which L1 = P1 ∩ Q and L2 = P2 ∩ Q,
with plane Q contains line d and is parallel with delay time
axis. A solution for value of parameter B is expressed by:

B =
A1Thresh1 + A1ξsystem

A2Thresh1 + A1Thresh1 + ξsystem
(11)

Figure 7 shows distributions of delay time Dt and se-
lected features of a full sequence with smooth changing
between states. Referring to the area of State 1, Dt is
around 30 ms/frame. In State 2 and State 3, the distribu-
tions are sloped and linearly proportional to the features
of motion and color similarity. In State 4 Dt is around
150 ms/frame. Thus, the delay time values spread in a range
from 30 ms/frame to 150 ms/frame, corresponding to the
disparity of images varying between stationary and suddenly
changing. For comparing image display when the sequence
is played at a fixed frame rate (i.e., 13 fps or a delay time
with a constant value of 77 ms), the proposed method allows
physicians to flexibility review the CE image sequence.
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4.2 Post-Processing of Delay-Time Values

Post-processing improves the quality of the image display,
but does not greatly impact on the values of the delay time.
Two steps are carried out for delay times calculated using
(10), and include data smoothing and solving artifact prob-
lems.

The delay time values include high frequency compo-
nents that could cause negative effects on the observations
of physicians because of uneven feelings when viewing a
sequence. Data are thus smoothed by a Gaussian filter with
full width at half maximum equal to 2 (FWHM = 2). In
other words, the delay time of a frame is smoothed by the
two nearest neighbor values to ensure that the transitions of
consecutive frames are gradual. The function for smoothing
data is as below:

Dt =
1

δ
√

2π
e−(Dt)2/2δ2 with FWHM = 2

√
2 ln 2δ (12)

A solution to avoid the tearing artifact problem is
also deployed. Such an artifact occurs when displaying of
images losses synchronization with the frame rate of the
screen. This is a problem caused by the possibility that the
graphic adapter’s display buffer updates at the wrong time
with respect to the screen refresh rate. By adopting the so-
lutions presented in [49], the tearing artifact problem is re-
solved by approximations of the delay time values to integer
values of the refresh cycle of the screen. Thus, a new frame
can only be updated to memory at the beginning of a refresh
cycle.

To precisely display images, unlike other multimedia
applications, our method emphasizes varying frame rates
throughout the entire sequence. Thus, to precisely display
corresponding values of delay time, we build a FIFO queue
from the image stream and undertake the processing of the
queue in a separate thread. A flip command (a function of
Microsoft DirectX) is used to burn images from the buffer of
the video graphic controller to the screen, with the flip timer
being set by the delay time values.

5. Experimental Results

5.1 An Illustration of the Ability to Vary Display Rates

The ability of the proposed method is demonstrated through
two cases below. To arrive at an expression that more conve-
niently describes varying display rates than Fig. 7, we count
the total frames displayed in a second throughout entire se-
quence. Referring to an example sequence in Fig. 8 b, the
degree of variability is from a minimum speed of 12 fps to a
maximum one of nearly 60 fps.

For frames at position [A] in Fig. 8 b, images are dis-
played at around 20 fps. Their delay time and some repre-
sentative frames are shown in detail in Fig. 8 c. Compared
with playing the sequence at a constant frame rate (assumed
as 13 fps), the images are displayed at twice the constant

value (160 ms, compared with 77 ms). With a longer de-
lay time, the frames in Fig. 8 c are clearer for physician in-
terpretation. Contrarily, the display rates at position [B] in
Fig. 8 b are increased. Some illustration frames at this posi-
tion (Fig. 8 a) show obvious similarity. The lower panel in
Fig. 8 a shows that the corresponding delay time is smaller
than four times if the sequence is played at a fixed speed
(around 20 ms, compared with 77 ms). Thus, the effective-
ness of the method in this case is its significant reduction in
diagnostic time.

The demonstrations above show that an adaptively con-
trolling display rate is a promising way to reduce diagnostic
time with less effort for the examining physician. However,
this is not sufficient to confirm clinical issues such as that
involving abnormal regions captured as well as system op-
erability when reducing diagnostic time. To present more
convincing evidence and for validating the subjectivity of
reducing diagnostic time, the proposed method underwent
clinical evaluations. These were conducted as below to com-
pare the proposed technique against the standard-view mode
used in the existing system.

5.2 Conducting Evaluations

To ensure that the conditions for the evaluation of both sys-
tems were as similar as possible, a GUI application (called
P system) was developed for the proposed method so that
normal diagnostic functions such as the capture of abnor-
mal regions, the manual adjustment of viewing speeds and
changes in viewing display, as well as functions for navi-
gating and verifying suspicious regions were available. The
delay time was calculated using the optimal parameters set
from the results in Sect. 3.3. RAPID Reader Version 4 (the
G system) is downloadable at [6]. Both systems were in-
stalled on a same PC with a Pentium IV 3.2 GHz, and 2 GB
RAM.

We prepared six full sequences of patient data. The
evaluations were implemented on both systems by the same
four physicians from the Graduate School of Medicine,
Osaka City University, who implemented the empirical
study to select the optimal parameters set in Sect. 3.3. Thus,
forty-eight evaluations were conducted. To facilitate unbi-
ased evaluations, the order of the evaluations of a certain se-
quence were established so that the number of anterior/first
evaluations on each system was equal. The physicians were
asked to independently find and capture suspicious regions.

The main activities of the physicians as they used the
two systems were recorded. These included: [play →
stop], browsing/scanning frames to examine suspicious re-
gions, jumping frames, changing manually display speed
and capturing abnormal regions. The P system was pro-
grammed to record logs of the activities of the physicians
in a database. To monitor their actions when using the G
system, we developed a utility that captured the screen when
the computer mouse was activated. Interpretation of these
logs was implemented by manually reading the captured im-
ages. Figure 9 shows an example of the logged activities of
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Fig. 8 (b) Varying frame rates of an example sequence. (a) Delay time at positions [B], the sequence
is played at high speed (some continuous frames are displayed in the upper row). (c) Delay time at [A],
the sequence is played at a slow speed (some continuous frames are suddenly changed, as displayed in
the lower row).

physician (MD. A) for Seq. #3 under the two systems. From
logs expressed in this figure, the logged action based analy-
sis is described below to compare the performances of two
systems through three criteria; diagnostic time, abnormal re-
gions captured, and system operability.

5.3 Logged Action Based Analysis

5.3.1 Diagnostic Time

The physicians were asked to fill in evaluation forms when
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Fig. 9 Logged actions of MD. A for a CE image sequence (Seq. #3). The upper panel shows activities
under the P system, the lower panel shows activities under G system. Same abnormal regions captured
on both system are indicated by boxes.

Fig. 10 Diagnostic times of physicians under the two systems. Asterisks mark the first evaluation of
the corresponding sequence.

they started and finished a sequence evaluation. Diag-
nostic times were calculated from this data. The dura-
tions of activities such as continuously [play → stop],
browsing/scanning frames, and jumping frames were

summed by investigating the captured logs under both sys-
tems. These data were used to confirm the diagnostic times
noted by the physicians.

Figure 10 compares the diagnostic times of the physi-
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Table 3 The MatchingRate of evaluations on both systems (numerator is υ, denominator is χ of (13)).

Seq. No
MD. A MD. B MD. C MD. D

P system G system P system G system P system G system P system G system
# 1 2/3 3/3 3/3 2/3 2/2 2/2 2/4 3/4
# 2 3/3 3/3 4/5 5/5 4/5 5/5 5/6 5/6
# 3 4/4 4/4 3/4 3/4 5/6 6/6 7/7 7/7
# 4 2/3 2/3 1/2 2/2 3/3 3/3 5/5 4/5
# 5 5/5 4/5 3/4 3/4 5/5 4/5 5/6 6/6
# 6 5/5 5/5 6/6 6/6 8/8 8/8 2/2 2/2

Σ Reg. lost 1/23 2/23 4/24 3/24 2/29 1/29 4/30 3/30
Avg. 96% 91% 88% 92% 93% 96% 86% 90%

Average of P system = 91% and G system = 92%

Fig. 11 Average diagnostic time by sequences.

cians for the sequences examined using the two systems.
The first evaluation on the corresponding system for a cer-
tain sequence is also marked by asterisks in these figures.
The diagnostic times using the proposed system were sig-
nificantly reduced for most evaluations (approximately 16
min. for MD. A, 6 min. for MD. B, and 14 min. for MD. C).
The diagnostic time of MD. D was equal in both systems.

Average diagnostic time by sequence is shown in
Fig. 11. From this figure, the diagnostic time on the P sys-
tem was seen as reduced for all six sequences. The average
diagnostic time for the P system was 32.5 ± 7 minutes and
it was 42.4 ± 9 minutes for the G system. Applying a T-
test to measuring the significance of any difference of the
average values, we found that the diagnostic time using the
P system showed a significant difference from evaluations
implemented using G system (t = 3.1, d f = 47, p < 0.05).

5.3.2 Ability to Capture Abnormal Regions

The number of abnormalities present in evaluations differed
according to the physician because it depended on factors
such as personal judgment, skill level and concentration dur-
ing the evaluation. Therefore, we took into account the ab-
normal regions captured by the same physician using the
two systems. First, the abnormal regions χ of a sequence
were considered by merging abnormal regions captured with
both systems. For example, as shown in Fig. 9, abnormal re-
gions captured by MD. A on both systems are matched. The
matching rate was the ratio between abnormal regions υ cap-
tured in a particular system and the χ abnormal regions, as

below:

MatchingRate =
υ

χ
100(%) (13)

Table 3 shows the ratio of the evaluations by the physi-
cians using both systems. The average value was 91% for
the P system, approximating the matching rate on the G
system (92%). The results implied there are no limitations
in capturing abnormal regions when the display rates were
controlled under the proposed technique.

Besides the above analysis for full sequences, we im-
plemented evaluations to verify whether abnormal regions
are lost in the stationary state because of the high speed
display. The total diagnostic time when examining doctors
examined frames in this state was calculated. As well, we
compared the accuracy of abnormal regions captured in the
stationary state. The results showed a reducing diagnostic
time with no loss of abnormal regions when examining doc-
tors implemented evaluations on the P system.

5.3.3 Operability of the Physicians

To evaluate operability in terms of a quantitative analysis,
Fig. 9 can be used to illustrate the different activities imple-
mented under the two systems. For qualitative indices, we
used two criteria that can be impacted by the proposed tech-
nique:

- Comparing the number of changing speed actions on
both systems. As shown in Fig. 12 (a), the number of eval-
uations with no changing speed actions was higher for the
proposed system. The behavior of the physicians for this
action clearly differs between the two systems.

- Another criterion is how the examining doctors per-
ceived abnormal regions. Such an assessment might be
achieved by counting events [play → stop] in the evalu-
ations. Such events generally imply an action to verify or
look for a suspicious region. As shown in Fig. 12 (b), these
actions in the P system are less than in the G system for
three of four examining doctors. In terms of the accuracy of
capturing abnormal regions, Table 3 showed no significant
different between the two systems. Therefore, automatic ad-
justments of the display rates using the proposed technique
achieve substantial operability in the diagnostic procedures.

On the other hand, there is a skill level function sup-
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Fig. 12 Comparing the number of changing speed actions (a) and of [play→ stop] actions to capture
abnormal regions (b) in the evaluations between P system and G system.

ported in the P system that allows examining doctors to ad-
just the display speed to that suited to their expertise. From
the GUI interface, examining doctors can manually select a
level among seven skill levels. The results of analysis of the
logged actions show that some levels were preferred. MD. B
always used Level 7 in his examinations, MD. A and MD.C
preferred level 5, 6, 7, while MD. D selected Level 5. Ob-
viously, supporting different skill levels that takes into ac-
count the expertise of the examining doctor makes the sys-
tem more flexible.

6. Discussions and Conclusion

6.1 Discussions

For feature extractions, generic color histogram index-
ing was selected to measure the similarity of consecutive
frames. However, CE images usually present homogeneous
regions of the GI tract wall, thus constructing a digestive
color model is reasonable for the color histogram indexing
method. Same as the observations of Mackeiwicz et al. in
[21], the dominant color of the CE images is a pinkish color
in the stomach and pinkish to yellowish in the small intes-
tine. Intuitively, the range of color presented in CE images is
relatively small (e.g. around 20% of the possible color space,
in [21]). The result for measuring the similarity of con-
secutive frames, when indexing equalizations are focused
within the dominant colors of this model, is thus more pre-
cise. For motion extractions in the current work, the accu-
racy of the measurements of the displacement of consecutive
frames depended on the selection of predetermined param-
eter values. Research focused on motion estimations or the
adoption of results of intestinal motility for the CE sequence
could overcome current limitations. Furthermore, although
the two selected features are a successful way to reflect peri-
staltic activity in the GI tract, more features can be evaluated
and these could improve the results. For example, Combra
et al. [24] analyzed a set of useful features for the discrimi-

nation of images extracted from CE image sequences. More
computer vision research for CE images dedicated to intesti-
nal motility should suggest the most relevant features.

Four states are classified in the scheme using a decision
tree classifier that is learned from a one thousand training
data set. To evaluate the size of the training data set used, a
series of testing data of various sizes was established. The
cross-correlation values of the feature distributions of the
states between the testing data and the training data were
examined. The results implied that the size of the training
data set was sufficient for the state classification task. In-
deed, with this scheme, the optimizing tree requires a lot of
effort and exhaustive searching in the space of all possible
structures, e.g., as in our solution in Sect. 3.3 for selection
of the optimal parameters set. Moreover, an issue related to
the tree classifier is that to obtain a higher classification per-
formance, a very high performances is needed at each node
of the tree. Therefore, non-hierarchical approaches such as
HMM or a Support Vector Machine could be utilized in fu-
ture research to overcome these limitations.

6.2 Conclusion

This paper presented a novel method to reduce the diagnos-
tic time required to review and interpret CE videos through
efficiently controlling the image display. The robustness of
the method relies on the original images being displayed
with no frame skipping. Major issues resolved included:
1) although images were captured at a low frame rate and in
uncontrolled conditions, the differences between two con-
secutive frames were efficiently spread among the various
conditions of image acquisition by combining the features
of color and motion; 2) whereas recognizing GI motility
patterns from CE videos still has limitations, an algorithm
for classifying the states overcomes this problem; and 3) the
functions to compute delay time are adaptable with the clas-
sified states and support the variable skill levels of physi-
cians. The post-processing procedures enhanced and pre-



526
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

cisely controlled the display of images.
Clinical evaluations were conducted in experiments to

investigate the effectiveness of the proposed system com-
pared to the standard view using the Rapid Reader system.
From these results, we concluded that the diagnostic time
using our proposed system was 32.5 ± 7 minutes for each
evaluation. This time was 10 minutes less than that for
the same evaluations implemented using the Rapid Reader
application. Moreover, the proposed method required less
effort for the examining physicians while the number of
abnormalities found with both system was similar. These
results should convince physicians that the proposed tech-
nique can be safely used for routine clinical diagnoses.

Some limitations of the proposed method were dis-
cussed and areas suggested for future research. Effective in-
dexing could be resolved by constructing a GI color space,
whereas non-hierarchical approaches are suggested for re-
search into recognizing patterns of GI motility. As well,
using the action logs of physicians can be applied to clini-
cal applications and for educational purposes. The expertise
of physicians can be automatically evaluated and the sys-
tem suitably adjusted for their skill level. These adjustments
would allow for the effective and quick navigation of inter-
esting parts of a sequence. The target of examinations can
thus be more focused on suspicious regions rather than nor-
mal ones. This would have a major impact on diagnostic
procedures.
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