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Abstract—Segmenting reddish lesions in capsule endoscopy
(CE) images is an initial step for further computer-assisted
applications such as image enhancement, abnormal measure-
ment/tracking, and so on. In this paper, we propose an automatic
segmentation method that is successful even with CE image
including unclear reddish lesions. To obtain this, the proposed
method seeks good features to discriminate the reddish lesions
from normal tissues. For implementations, we first extract only
meaningful regions in a CE image through a pre-segmentation
step. The proposed features then are extracted for the meaningful
regions in stead of the whole image. We approaches segmentation
task through considering a statistical operator for the extracted
features, that is local mean image. Candidates of the abnormal
regions are located in the local mean image with assistants
of a diffusion process. Evaluations in the experiments confirm
effectiveness of the proposed method with both qualitative and
quantitative measurement.

I. INTRODUCTION

The capsule endoscopy (CE) technology [1] has been
widely used in examining diseases in the GastroIntestinal (GI)
tract. It is especially successful for finding obscure bleeding
regions in the small bowel, that is difficult for the conventional
endoscopy techniques [2], [3]. An obscure bleeding abnormal-
ity usually presents a color tone with more red (or reddish) than
normal regions. In general term, we name these appearances
as reddish lesions. The reddish lesions in CE images infer
symptoms of different abnormality: bleeding, angioectasia, and
erythema diseases [2], [4]. Examining characteristics of these
blood-based abnormalities1 therefore usually takes account
extremely concentrations of the examining doctors. Fig. 1
shows several examples of reddish lesions in CE images. While
appearance of reddish lesions in Fig. 1(a)-(b) are dominant
from normal tissues, reddish lesions in Fig. 1(c)-(d) are more
ambiguous and unclear. Intuitively, examining doctors need
assistant tools for enhancing the image display. Segmenting
the reddish lesions is an initial step for such tools. It also
has important roles in evaluating abnormal types, abnormal
measurements and classifications.

Regarding computer-aided tools for CE images, various
state-of-the-art techniques are listed in recent surveys of Karar-
gyris et al. [5] and Chen et al. [6]. For segmenting bleeding
regions task, color and its derivations usually are favor features.
Lau et al. [7] proposed a technique utilizing two-level threshold
for image luminance and color saturation features. The work

1In this paper, description about blood-based abnormalities is concerned to
reddish lesions.

by Karargyris in [4] utilized features in Ohta color space
[8]. Penna et al. in [9] discriminated bleeding lesions from
normal regions by using Reed-Xiaoli (RX) detector [10].
For detecting bleeding regions, Giritharan et al. [11] extracts
dominant color descriptor [12], which is one of MPEG-7 visual
descriptors, and co-occurrence of the dominant colors. Pan et
al. [13] deploys a probabilistic neural network using six color
components (R,G,B,H,S,V). However, specific characteristics
of the GI wall’s appearance, which often distinct from other
type of images, are not carefully considered. The previous
works utilize color features in a full range of a color space
(e.g, original RGB space or transformed space as HSV, Lab).
The fact that the color tones of GI wall regions distribute
quite strictly in a subspace: e.g., the stomach contains pinkish
colors, while the small intestine contains pinkish-yellowish
colors. To adapt with this observation, a specific color space,
named GI color space, was proposed in our previous work [14].
Advantages of the GI color space is that it suggests available
color ranges that definitely define to the CE images. These
characteristics are useful for presenting image data of CE
images, but also for discriminating abnormalities from normal
tissues.

In this work, we tackle this observation suggests valuable
features by evaluating discriminations between abnormal and
normal regions through a training dataset in the learning
procedure. The results show that discriminant characteristic
is a 1-D feature that is extracted in the GI color space. It is
as good discriminant as original color features (RGB triple).
Based on this feature, a segmentation algorithm is proposed. A
pre-segmentation step is implemented to eliminate non-wall GI
regions. The image data of the meaningful regions is projected
into the GI color space. After extracting the image features, a
statistical version of the transformed image is calculated, that
is local mean image. This operator formulates an local mean
image from neighborhood regions through a sampling function
at a certain scale. Candidates of the abnormal regions are
located in the local mean image through a diffusion process.
The experiments evaluate the bleeding segmentations with a
large testing data set in term of both qualitative and quantitative
measurements.

II. LEARNING FEATURES FOR DISCRIMINATING

(AB)NORMALITIES

A. The feature extractions

Because GastroIntestinal (GI) color space [14] associates
us in regarding works, we shortly introduce its establishment
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(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 1. Some examples of reddish lesions. (a)-(b) are clear images, whereas (c)-(d) are unclear images. Blue circles are marked around reddish lesions by
examining doctors.

(a) (b) (c)(a) (b) (c)

Fig. 2. The proposed GI Color space. (a) Distribution of RGB data from a large CE images. (b) Clustering color components into wall/non-wall groups. (c).
Distribution of wall color components presented by two principal components (using PCA)

and features in the following section. A GI color space is
constructed from a large dataset of the CE images. The most
popular color components are extracted from such dataset. Fig.
2(a) plots them in the original RGB color space. As shown
in Fig. 2(b), the color components of GI wall regions are
located within white boundary regions of a map created by
Self-Organized Map (SOM). A set of these color components
is denoted as a set of Θ. The statistical characteristics of Θ
also are measured through two features: eigenvectors νΘ and
mean values μΘ. Hence, given a crgb color, it can be projected
into the proposed GI color space following a form of PCA
transformation ζ as follow:

crgb → cpc1,pc2,pc3 : νT
Θ(crgb − μΘ) (1)

It notes that we transform only color components of the wall
regions in CE images. Therefore, a pre-segmentation step is
proposed to eliminate non-wall regions from an original image.
It is a quite straightforward process. First, an image is divided
into blocks or windows. Size of each window region is W×H .
In each window, we look for pixels, whose image data belongs
to a color component of Θ. Such window is considered as a
wall region if total number of the pixels found larger than a
threshold value. In our implementation, the threshold value is
equal 70% of the window size. Then a 2-D dilation operator
is applied to smoothly connect the wall regions together. Fig.
3(a)-(d) shows some examples with boundary of the wall
regions. While darkness of lumen regions are eliminated in Fig.
3(a) and (d), current approach also success in cases including
noises such as fluid, food, as shown in Fig. 3(b) and (c).

To learn characteristics of the reddish lesions and discrim-
inating features, we prepare a training dataset including three
common types of blooded-based pathology:

- Erythema: 134 images;

- Angiodysplacia: 64 images;

- Bleeding: 143 images;

The data set is collected from 300 patient sequences
within two years in Graduate School of Medicine, Osaka City
University. Reddish lesions are carefully marked by experts.
Some of them with marked regions are shown in Fig. 4(a). For
discriminant analysis, color features are extracted from these
training dataset. Besides r, g, b channel and rgb triplet, the
image features extracted in the GI color space are examined.

A triplet color components in the GI color space
(pc1, pc2, pc3) presents uncorrelated variables as good as
possible. Furthermore, while the main components pc1, pc2

present commons or general appearance of wall regions, the
last component pc3 is more sensitive, especially, with small
changes in neighborhood regions. This feature (pc3) therefore
is expected to well discriminate abnormal and normal regions,
especially, in case of unclear reddish lesions. Finally, five
features (r, g, b, rgb and pc3 components) are extracted. We
assess performance of these features using Linear Discriminant
Analysis (LDA). In the empirical study below, we confirm
that pc3 component is an optimal feature. The fact that pc3

is also more sensitive with noise data than other components.
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(a) (b) (c) (d) 
Fig. 3. (a)-(d). Results of the pre-segmentation step. Wall regions are extracted from original images

(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 4. (a-d) Top row is original images, the dotted lines mark boundary of abnormal regions. Bottom row is PC3 distributions of normal (blue line) and
abnormal regions (red line)

However, in our segmentation scheme, only wall regions are
considered, influence of noise data therefore are reduced.

B. Evaluating the features for discriminating (ab)normalities

In this empirical study, features of abnormal regions and
normal regions are represented through probability density
functions (PDFs). To evaluate performance of each feature, sta-
tistical classification approaches are utilized through checking
pattern similarity relative between prototypes. Three distance
classifiers are selected as below:

• C1 - Minimum distance classifier (or template match-
ing classification) based on Euclidian

• C2 - Mahalanobis linear discriminant

• C3 - Fisher Linear Discriminant

These classifiers are introduced in recognition textbooks, e.g
Ch. 4 in [15]. Let us denote a certain feature vector as x

(with any d−dimension). Objective of a classifier Ci (i =
1, 2, 3) is to decide a data x as a pixel in normal region or
abnormal region through a distance function d. Given a training
image, each pixel belonging abnormal (w1) or normal regions
(w2) will be checked using classifier Ci. We then evaluate its
performance using a measurement of corrected rate, denoted
as corRate. The corRate of a classifier is calculated by:

corRate1 =
P

i∈w1
t

P
i∈w1

1 × 100% with

{
t = 1 if d1 < d2

t = 0 otherwise

corRate2 =
P

i∈w2
t

P
i∈w2

1 × 100% with

{
t = 1 if d2 < d1

t = 0 otherwise

corRate = corRate1+corRate2
2

(2)

Average results of the corRate is shown in Table I. The pc3
and rgb triplet features are outperform single channel (r,g,b)
in all classifiers. Performance of pc3 and rgb triplet is also
similar C2, C3 where correlation between variables is taken
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(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 5. Local Mean Image calculation. (a) Original Image. (b) PC3 image data. (c) Responsibility of a Gaussian (G(50,2.5)), (d) Local Mean Image Result

account. The results confirm that pc3 feature presents very
well discriminations between normal and abnormal regions.
Fig. 4(b) shows intuitively performance of pc3, whose the
abnormal distributions (in red lines) is obviously separated
from the normal ones (in blue lines).

TABLE I. AVERAGE OF THE corRate WITH DIFFERENT CLASSIFIERS

Classifier R G B RGB PC3

C1 74 62 65.5 80.3 90.5
C2 74 62 65.5 91.5 90.5
C3 74 62 65.5 92.5 90.5

III. SEGMENTATION ALGORITHMS

In our proposed method, the segmentation task is ap-
proached in view of analysis of multiscale image statistics.
Originally, there is an adaption between statistical analysis and
image scale space. For example, multiscale image statistics in
works of Yoo et al [16] seeks crucial scale through the statis-
tical operators, image can be segmented at ”natural” boundary
of normal and abnormal regions without requirements of a
prior knowledge (e.g, boundary, or shape of objects). In other
words, the segmentation algorithms are based on estimating
central moments of the probability distribution of intensities
at arbitrary locations within an image across a continuously
varying range of the scale.

In light of these considerations, we utilize a basic statistical
operator, that is local mean image. Let consider an area of an
observed image Ĩ(x). Its values may be sampled over a local
neighborhood about a particular location x using a weighting
function, h(x), and a convolution operator: Ĩ(x)⊗h(x). With
respect to invariant spatial translation and rotation, the h(x)
function can be a normalized Gaussian function. At each
scale s of the Gaussian, the statistical operator comprises of a
sum of the original image intensities weighted by a Gaussian
sampling kernel. With the desired s, abnormal regions in Ĩ(x)
is extractable.

A. Local mean image calculation

Utilizing the optimal feature within the meaningful region
w0, definition of Ĩ(x) is:

Ĩ(x) =
{

pc3(x) if x ∈ w0

0 otherwise
(3)

A normalized gaussian kernel h(x) is defined at scale s by:

h(x) = G(x, s) =
1√

2πs2
e

−x2

2s2 (4)

Where parameter s is standard derivation or spread parameter.
A statistical operator such as the local mean image, denoted
by μ(Ĩ(x), s), is defined by:

μ(Ĩ(x), s) = E〈Ĩ(x), s〉 =
∑
x∈ω

(G(Ĩ(x))Ĩ(x) (5)

Parameter ω presents a window region with size of w × h
pixels (e.g, 3×3 pixels in our implementations). Fig. 5 shows
a local mean image calculated using (5). In this example, the
reddish lesions in the original image (Fig. 5(a)) is unclear
and ambiguous. The extracted meaningful regions obviously
remove contaminations. Using pc3 data as shown in Fig. 5(b),
it is more clear to discriminate abnormal and normal regions.
By using a reasonable scale s, Fig. 5(c) shows probability
values of the Ĩ(x) values. Finally, Fig. 5(d) measured the
abnormal regions at the desired scale s. As shown in Fig. 5(d),
the abnormal regions can be intuitively located through a local
peak detections. A diffusion technique is applied to the local
mean image for this task.

B. Detecting local peaks by diffusion techniques

A diffusion processing is adopted to apply to the local mean
image mu(Ĩx, si) for detecting local peaks. A desirable char-
acteristic of a nonlinear diffusion filter is that it will encourage
intra-region smoothing, while inhibit inter-region smoothing.
The nonlinear diffusion technique is first introduced by Perona
and Malik in [17]. Fig. 6(a) shows diffused results from the
local mean image in Fig. 5(d). The desirable characteristic of
the diffused image is that abnormal region is smoothed whereas
it even enhances the edge with normal one.

Identifying the boundaries between abnormal and normal
regions from the diffused image is a straightforward proce-
dures. We deploy a scheme including two threshold-level. The
first threshold T1 defines a level that is a saddle level. The sec-
ond threshold T2 defines a minimum/maximum level in order
to confirm actual peaks are existing within an abnormal region.
The diffused image normalizes the original data into l levels
(l=64, in our implementation). Visually, seeking threshold T1

is similar to find pixels coded in yellow color in Fig. 6(a). T1

value is average data as such pixels. T2 level is a relative value
between T1 and minimum value of the diffused image. In our
implementation, T2 is equal 75% of T1, as shown in Fig. 6(b).
By comparing the diffused image with with T1 and T2, the
abnormal regions is extracted, as shown in Fig. 6(c). Fig. 6(d)
shows the corresponding boundary between the abnormal and
normal regions in the original image.
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T2 level
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(a) (b) (c) (d)

T2 level

T1 level

T2 level

T1 level

(a) (b) (c) (d)

Fig. 6. Two level threshold value approach. (a) The diffused image of Fig. 5(d). (b). Two level threshold identifies local peaks. (c). A region satisfy both T1

and T2 thresholds (c). Boundary of abnormal region is plotted in the original image. (Fig. 5(a))

IV. EXPERIMENTAL RESULTS

For visualizing comparisons, we evaluate boundary of the
proposed method with segmentation results using watershed
transformation with user iterations. With a good initial scheme,
segmenting abnormalities can obtain well results by the wa-
tershed algorithms (Ch. 5 in [18]). We uses an initial scheme
with two markers: external and internal markers. An external
marker coarsely marks boundary in order to quickly separate
the abnormal regions from normal regions. Internal markers
point out seed (a center area) of abnormal regions. Fig. 7 shows
an example with a zoom-in version around the segmented
regions. As shown, there is not so large differences between
two results, even the boundary of the proposed method is more
precisely. Additional segmented results are shown in Fig.8.
For CE images including the scatted reddish lesions (the last
row in Fig. 8), the watershed results make misunderstand with
several initial markers. By using our method, the problem of
segmenting scatted reddish regions is solved.

We examine quantitative measurement of the segmentation
results by using two testing data. Testset1 includes 100
images with only reddish lesions. Because they may appear in
different type of abnormal regions, Testset2 is same number
of images with any type of abnormal regions (such as tumor,
ulcer, polyps, so on). The ground-truth data is manually
marked by circles or arrows yielded directly in diagnostic
procedures of the medical experts. Segmentation results of two
testing data are measured following criteria below:

• υd the probability of detection. For a good segmenta-
tion, υd should be close to 100%.

• υfar the probability of false alarm or over segmen-
tation rate, For a good segmentation, υfar should be
close to 0%.

• υun the probability of under segmentation, i.e., the
percentage of ground truth data that are not including
in automatic segmentation results.

TABLE II. EVALUATION RESULTS

TestingData υd υfar υun

Testset1 95 8 14
Testset2 90 12 29

Avg. 92 10 16

The υd value in Table II confirms effectiveness of the
proposed method. We obtain very good results for the CE im-

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 7. Qualitative evaluation of the segmentation results. Upper row: (a)
Original image. (b) The segmented abnormal regions by the proposed method.
(c) A zoom-in to region around abnormal region in (b). Boundary is marked
in white-line Lower row: (d) Internal and external marker are marked for
applying the watershed algorithms. (e) The segmented result. (f). A zoom-in
to region around abnormal region in (e)

age including reddish lesions. By using the proposed method,
the segmentation results based on Testset1 is outperform
Testset2 testing dataset, particularly for υun values. The
main reasons is that Testset2 data includes different type of
abnormal regions. However, the over-segmentation rate υfar is
still quite high because the scheme to select two-level threshold
value in Sec.III-B is not strong enough to eliminate noise data
in local mean images.

V. CONCLUSION

This paper proposed an automatic method for segmenting
the reddish lesions from CE images. The segmentation task
solved problems of unclear reddish regions. We first utilized
a good feature in the dedicated color space of CE images
for discriminating reddish lesions from normal regions. The
segmenting algorithms had impacts from the statistical im-
age techniques. The segmentation results suffered from the
experimental evaluations in both qualitative and quantitative
measurements. The current segmentation results fit to ap-
plications such as image enhancement, in which the over-
segmentation rate is not strictly required. In the future, a robust
classification scheme can be applied to the current results to
eliminate non-abnormal regions. It is expected to reduce the
over-segmentation rate.
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(a) (b) (c) (d) (e) 

Fig. 8. Some examples of the segmentation results. In each row : (a) Original Image. (b) Segmentation results by the proposed method. (c) Ground-truth data
marked by the examining doctors in blue circles. (d). Internal/External markers (manually) for watershed algorithm. (e). Watershed algorithm results
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