

Indoor Localization in Public Buildings

Dao Trung Kien 6th Annual AURA Workshop - Hanoi, Vietnam

MICA International Research Institute Multimedia, Information, Communication & Applications UMI 2954

Hanoi University of Science and Technology 1 Dai Co Viet - Hanoi - Vietnam

Location-based Services (LBS)

- Information customization based on user location
- Navigation guide
- Location-based advertising
- Security surveillance, alert, notification, warning,...

Indoor Localization

- GPS generally works only outdoor → search for indoor localization schemes
- Many approaches proposed for indoor localization: cellular networks, infrared, ultrasonic, computer vision, RFID...
 - All suffer either from the limited accuracy, range, lacking of the infrastructure, or high deployment price

Combination of multiple technologies to overcome the limitation of individual ones

Outline

Introduction

- System architecture
- Localization in indoor environment
- Sample applications
- Conclusion

- User/robot localization, tracking & navigation
- Device management
- User information collection

Environment Modeling

Unified environment model for

- Localization
 - ★ Signal attenuation for WiFi, RFID,...
 - ⋆ Range information for cameras
 - ★ Result validation
 - ★ Result filter with map information
- Path-finding and navigation
- Visualization

Using XML

MICA 2016

MySQL database

O

Visualization using Google Maps (2D)

MICA 2016

Visualization using Standalone App (3D)

Device Management

Abstract layer for devices

Allowing 2 modes

- Physical mode with real devices
- Simulation mode with virtual devices

User/Object Localization

Integration of multiple technologies

- WiFi signals
- RFID
- Cameras
- Bluetooth
- Step count
- Multimodal (combination of above technologies)

User/Robot Navigation

Optimal path finding

Shortest path

MICA 2016

- Aware of walls, floors, stairs,...
- Personalized on the basis of user context
- Collision avoidance in dynamic environments

Technological Platform

Validation by

- Virtual reality simulation
- Physical platform

Generic modelling

 It is easy to build models for différent buildings

Nguyen Dinh Chieu School of Blind Pupils

Technological Platform 8th floor

Technological Platform 9th and 10th floors

Outline

Introduction

- System architecture
- Localization in indoor environment
- Sample applications
- Conclusion

Aggregation Approach

Probability based

- For each point (x,y,z), calculate aggregation probability ρ_Σ
- Choose (x,y,z) with highest ρ_Σ and acceptable precision

Maximizing

$$\rho_{\Sigma}(x, y, z) = \Omega_{i=1..n} \left(\rho_i(x, y, z) e^{-\lambda_i t}, R_i \right)$$

- Ω : probability aggregation function (sum, product,...)
- n: number of technologies
- ρ_i : probability of technology *i*
- *R_i*: precision constant of technology *i*
- λ_i : time decay constant of technology *i*

- (x_0, y_0, z_0) : returned location by GPS
- σ : function of accuracy by 3-sigma rule

WiFi

Gaussian probability

$$\rho = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(r-r_0)^2}{2\sigma^2}}$$

- r₀: nominal distance from empirical propagation model
- σ : function of r_0

0.01

Distance (m)

Pedometer

Gaussian probability

- (x_0, y_0, z_0) : nominal user location
- σ: function of (*step-length x step-count*) and history precision
- d: Euclidean distance function

G

Historical & Map Information

Gaussian probability

$$\rho_i(x, y, z) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{d^2(x, y, z, x_0, y_0, z_0)}{2\sigma^2}} <$$

- (x_0, y_0, z_0) : previous user location
- σ : function of user speed by 3-sigma rule
- d: distance function with environment map awareness
 - ⋆ Shortest-path based
 - ⋆ Impossible location avoidance

G

Enhancement with Environment Constraints

Speed constrain

- Localization results are convergence with some error especially for points near walls.
- $s^* = v \times \Delta t$
 - \star s^{*}: distance traveled in Δt with average speed of user is v
 - \star Δt : time difference between 2 localization results
- s: shortest walkable path from A_t to $A_{t+\Delta t}$
- ♦ Constrain: s^{*} < s</p>

 $A_{t+\Delta t}$

Results

- WiFi only:
 - ◆ <u>video</u>
- WiFi + RFID + pedometer:
 - ♦ video
- WiFi + RFID + pedometer + historical & environment info:
 - ♦ video

Results

	WiFi, no constrai ns	WiFi, with constrai ns	Cam, no constrai ns	Cam, with constrai ns	Multi, no constrai ns	Multi, with constrai ns
Data samples	129	129	1833	1833	1966	1966
Max error (m)	7.63	4.48	4.53	4.50	4.78	4.79
Average error (m)	1.66	1.55	0.88	0.88	0.91	0.89
Std. deviation(m)	1.16	1.30	0.64	0.64	0.67	0.65
RMSE (m)	2.19	1.91	1.09	1.09	1.13	1.10
Error with reliability of 90% (m)	3.26	3.17	1.69	1.69	1.83	1.71

MICA 2016

Results: Multimodal, with Constrains

MICA 2016

Outline

Introduction

- System architecture
- Localization in indoor environment
- Sample applications
- Conclusion

Smart Remote Control for Home Appliances

Legends:

- 💢 Bulb
 - Air conditioner
 - Television/screen
 - Security camera
- Projector

T

User location

Based on

- User location
- Phone orientation

- Tilt angle tolerance: 15°
- 1 television, 1 projector, 3 air conditioners, 3 bulbs, 1 security camera
- Showroom (9 m×13.5 m) +
 Smart-room (4.5 m×4.5 m)
- Tested at 8 different locations

Interaction with Robots

User-Adaptive Device Control

Nguyen Dinh Chieu School for Visually Impaired People

2D map

3D view

User Interaction via Smartphone

Guidance for Visually Impaired People

Conclusion

- Platform for the development of pervasive computing applications
- Highly extensible with generic design and implementation
 - Heterogeneous devices and generic data management
 - Integration of multiple technologies for localization and navigation
- Object-oriented modeling of dynamic environments
- Real-time visualization, and service provider for applications

Thank you for your attention!

