
Formal proofs of software, some perspectives

Jean-François MONIN

jean-francois.monin@imag.fr

Université de Grenobles Alpes, Verimag & LIAMA

Hanoi, October 17, 2016

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 1 / 20



Question

What do

Bitcoin transaction scripting
network packet filtering
power management

have in common ?

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 2 / 20



Why formal proofs of software?

Objectives
Bug-free critical components of software systems
Complexity more and more challenging
Formal proof technology can be applied

directly on components
or (additionally) on auxiliary tools: compilers,...

Application fields
Transportation, vehicles, aircrafts, powerplants, banking, telecom,...

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 3 / 20



Why bugs?

Systems
Result of design and implementation decisions
For actions requiring effort, decisions take time
(e.g. carrying heavy bricks, stones)

Software systems
Copy is for free
Result of many many design and implementation decisions
Most decisions take almost no time

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 4 / 20



Why bugs?

Conjecture 1
Comparing 2 systems built using the same amount of work time,
the software contains orders of magnitude more decisions
than the other.

Remark
Each decision is an opportunity of mistake

Corollary
Comparing 2 systems built using the same amount of work time,
the software contains orders of magnitude more mistakes
than the other.

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 5 / 20



Using software components

Analysing software components?
Complicated objects

No time to analyse them

Common receipe

Repeat until it works
guess, make conjectures
experiment

Makes the situation even worse!
Multiplication of approximately understood,
possibly unsuitable or buggy pieces of code

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 6 / 20



A piece of software

can be seen as a gigantic formula
written in some programming language
itself designed using many design decisions

Some of them are wrong
E.g. : misleading use of good mathematical notations with another meaning
a = b + 1
i = i + 1
Hence 0 = 1 ?

Conjecture 2
Writing good programs with badly designed langages is as easy as
making calculations in the roman numeral system.

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 7 / 20



Another overlooked notion: sums of types

Data structures
arrays, records
lists, trees: pointers

Set theory
Cartesian products, unions, intersections (?)

Better: use type theory, related to proof theory
products × ∧
sums (disjoint unions), said otherwise choice ⊕ ∨

Functional programming
products (a,b) = λk . k a b with type (A→ B → X )→ X
sums or choice
inj1 a = λk1k2. k1 a with type (A→ X )→ (B → X )→ X

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 8 / 20



Formal methods

Anyway, even with badly designed programming languages, it is
possible to provide a mathematical definition of the meaning of a
program.

Then it is possible to state logical conjectures on programs and to
(dis)prove them.

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 9 / 20



Scientific background

Formal Semantics of programming languages
Rule-based, providing a clear mathematical definition
Natural semantics, Structural Operational Semantics

Secure proof assistants
Higher-order logic; powerful type systems, inductive types
Prominent instances: Isabelle, Coq

Well-defined programming languages
Functional languages : Ocaml, Haskell...
based on λ-calculus
Dedicated languages, e.g.

Lustre
k-framework based on rewriting theory

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 10 / 20



Different approaches and tools to Formal Methods

Hoare logic, Calculus of Weakest Preconditions
imperative program = state transformer (forwards)

= formula transformer
B: refine set-theoretic imperative specifications into low-level programs

Model checking: for concurrent systems
compare temporal logic specifications with implementations
extensions to real-time systems, hybrid systems

Static analysis
automated computation of soundness properties,
e.g. about pointers and or array bounds

Interactive proof assistants
provide full power of maths

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 11 / 20



Coq, a secure proof assistant

Support to any mathematical activity
Write definitions
State and prove theorems

Applications in pure maths
4 colour theorem, odd-order theorem (finite group theory)
category theory, higher-order homotopy theory

Applications in Computer Science
Compcert : certified C compiler
Verasco : certified static analyser
Security API
Distributed algorithms
Many many others

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 12 / 20



LIAMA project FCST

Focuses on the correctness of auxiliary tools: compilers,...

Certified compiler for Lustre
DSL for OS kernels

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 13 / 20



Answer

What do

Bitcoin transaction scripting
network packet filtering
power management

have in common ?

They all make use of in-kernel interpreters!

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 14 / 20



In-kernel interpreters

In-kernel interpreters have become a staple of modern
computation processes
They also have become a major concern regarding security
Risks of malicious attacks or intern errors
In-kernel interpreters run in kernel space
Any error or attack can have tremendous consequences

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 15 / 20



The BPF language

Originally serves for defining packets filters
Is a low-level language rather close to assembly
Is used here as a system call filter

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 16 / 20



Example of BPF

; load syscall number
ld [0]
; deny open() with errno = EACCES
jeq #SYS_open, L1, L2
L1: ret #RET_ERRNO|#EACCES
; allow getpid()
L2: jeq #SYS_getpid, L3, L4
L3: ret #RET_ALLOW
; allow gettimeofday()
L4: jeq #SYS_gettimeofday, L5, L6
L5: ret #RET_ALLOW
L6: ...
; default: kill current process
ret #RET_KILL

Each system call gets an entry in the list of rules, along with the
expected behavior regarding this particular sytem call.

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 17 / 20



SCPL

A domain specific language for defining sytem call policies
in a more user-friendly way
less error prone
reduces the risk of having incorrect BPF policies
to be translated to BPF

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 18 / 20



Example of SCPL

{ default_action = Kill;
rules = [
{ action = Errno EACCES; syscall = SYS_open };
{ action = Allow; syscall = SYS_getpid };
{ action = Allow; syscall = SYS_gettimeofday };
...
] }

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 19 / 20



Thanks

Questions?

JF. Monin (UGA Verimag) Formal proofs of software Aura, Hanoi, Oct. 2016 20 / 20


